[PDF] Optimization And Learning - eBooks Review

Optimization And Learning


Optimization And Learning
DOWNLOAD

Download Optimization And Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimization And Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Optimization For Learning And Control


Optimization For Learning And Control
DOWNLOAD
Author : Anders Hansson
language : en
Publisher: John Wiley & Sons
Release Date : 2023-06-07

Optimization For Learning And Control written by Anders Hansson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-07 with Technology & Engineering categories.


Optimization for Learning and Control Comprehensive resource providing a masters’ level introduction to optimization theory and algorithms for learning and control Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised learning, and reinforcement learning, with an emphasis on optimization methods for large-scale learning and control problems. Several applications areas are also discussed, including signal processing, system identification, optimal control, and machine learning. Today, most of the material on the optimization aspects of deep learning that is accessible for students at a Masters’ level is focused on surface-level computer programming; deeper knowledge about the optimization methods and the trade-offs that are behind these methods is not provided. The objective of this book is to make this scattered knowledge, currently mainly available in publications in academic journals, accessible for Masters’ students in a coherent way. The focus is on basic algorithmic principles and trade-offs. Optimization for Learning and Control covers sample topics such as: Optimization theory and optimization methods, covering classes of optimization problems like least squares problems, quadratic problems, conic optimization problems and rank optimization. First-order methods, second-order methods, variable metric methods, and methods for nonlinear least squares problems. Stochastic optimization methods, augmented Lagrangian methods, interior-point methods, and conic optimization methods. Dynamic programming for solving optimal control problems and its generalization to reinforcement learning. How optimization theory is used to develop theory and tools of statistics and learning, e.g., the maximum likelihood method, expectation maximization, k-means clustering, and support vector machines. How calculus of variations is used in optimal control and for deriving the family of exponential distributions. Optimization for Learning and Control is an ideal resource on the subject for scientists and engineers learning about which optimization methods are useful for learning and control problems; the text will also appeal to industry professionals using machine learning for different practical applications.



Optimization For Machine Learning


Optimization For Machine Learning
DOWNLOAD
Author : Suvrit Sra
language : en
Publisher: MIT Press
Release Date : 2011-09-30

Optimization For Machine Learning written by Suvrit Sra and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-30 with Computers categories.


An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.



Optimization For Machine Learning


Optimization For Machine Learning
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2021-09-22

Optimization For Machine Learning written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Computers categories.


Optimization happens everywhere. Machine learning is one example of such and gradient descent is probably the most famous algorithm for performing optimization. Optimization means to find the best value of some function or model. That can be the maximum or the minimum according to some metric. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will learn how to find the optimum point to numerical functions confidently using modern optimization algorithms.



Optimization Learning Algorithms And Applications


Optimization Learning Algorithms And Applications
DOWNLOAD
Author : Ana I. Pereira
language : en
Publisher: Springer Nature
Release Date : 2021-12-02

Optimization Learning Algorithms And Applications written by Ana I. Pereira and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-02 with Computers categories.


This book constitutes selected and revised papers presented at the First International Conference on Optimization, Learning Algorithms and Applications, OL2A 2021, held in Bragança, Portugal, in July 2021. Due to the COVID-19 pandemic the conference was held online. The 39 full papers and 13 short papers were thoroughly reviewed and selected from 134 submissions. They are organized in the topical sections on optimization theory; robotics; measurements with the internet of things; optimization in control systems design; deep learning; data visualization and virtual reality; health informatics; data analysis; trends in engineering education.



Black Box Optimization Machine Learning And No Free Lunch Theorems


Black Box Optimization Machine Learning And No Free Lunch Theorems
DOWNLOAD
Author : Panos M. Pardalos
language : en
Publisher: Springer Nature
Release Date : 2021-05-27

Black Box Optimization Machine Learning And No Free Lunch Theorems written by Panos M. Pardalos and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-27 with Mathematics categories.


This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.



Optimization Learning And Control For Interdependent Complex Networks


Optimization Learning And Control For Interdependent Complex Networks
DOWNLOAD
Author : M. Hadi Amini
language : en
Publisher: Springer Nature
Release Date : 2020-02-22

Optimization Learning And Control For Interdependent Complex Networks written by M. Hadi Amini and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-22 with Technology & Engineering categories.


This book focuses on a wide range of optimization, learning, and control algorithms for interdependent complex networks and their role in smart cities operation, smart energy systems, and intelligent transportation networks. It paves the way for researchers working on optimization, learning, and control spread over the fields of computer science, operation research, electrical engineering, civil engineering, and system engineering. This book also covers optimization algorithms for large-scale problems from theoretical foundations to real-world applications, learning-based methods to enable intelligence in smart cities, and control techniques to deal with the optimal and robust operation of complex systems. It further introduces novel algorithms for data analytics in large-scale interdependent complex networks. • Specifies the importance of efficient theoretical optimization and learning methods in dealing with emerging problems in the context of interdependent networks • Provides a comprehensive investigation of advance data analytics and machine learning algorithms for large-scale complex networks • Presents basics and mathematical foundations needed to enable efficient decision making and intelligence in interdependent complex networks M. Hadi Amini is an Assistant Professor at the School of Computing and Information Sciences at Florida International University (FIU). He is also the founding director of Sustainability, Optimization, and Learning for InterDependent networks laboratory (solid lab). He received his Ph.D. and M.Sc. from Carnegie Mellon University in 2019 and 2015 respectively. He also holds a doctoral degree in Computer Science and Technology. Prior to that, he received M.Sc. from Tarbiat Modares University in 2013, and the B.Sc. from Sharif University of Technology in 2011.



Optimization And Learning


Optimization And Learning
DOWNLOAD
Author : Bernabé Dorronsoro
language : en
Publisher: Springer Nature
Release Date : 2023-05-26

Optimization And Learning written by Bernabé Dorronsoro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-26 with Computers categories.


This book constitutes the refereed proceedings of the 6th International Conference on Optimization and Learning, OLA 2023, held in Malaga, Spain, during May 3–5, 2023. The 32 full papers included in this book were carefully reviewed and selected from 78 submissions. They were organized in topical sections as follows: advanced optimization; learning; learning methods to enhance optimization tools; optimization applied to learning methods; and real-world applications.



Distributed Optimization And Learning


Distributed Optimization And Learning
DOWNLOAD
Author : Zhongguo Li
language : en
Publisher: Elsevier
Release Date : 2024-07-18

Distributed Optimization And Learning written by Zhongguo Li and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-18 with Technology & Engineering categories.


Distributed Optimization and Learning: A Control-Theoretic Perspective illustrates the underlying principles of distributed optimization and learning. The book presents a systematic and self-contained description of distributed optimization and learning algorithms from a control-theoretic perspective. It focuses on exploring control-theoretic approaches and how those approaches can be utilized to solve distributed optimization and learning problems over network-connected, multi-agent systems. As there are strong links between optimization and learning, this book provides a unified platform for understanding distributed optimization and learning algorithms for different purposes. - Provides a series of the latest results, including but not limited to, distributed cooperative and competitive optimization, machine learning, and optimal resource allocation - Presents the most recent advances in theory and applications of distributed optimization and machine learning, including insightful connections to traditional control techniques - Offers numerical and simulation results in each chapter in order to reflect engineering practice and demonstrate the main focus of developed analysis and synthesis approaches



Learning And Intelligent Optimization


Learning And Intelligent Optimization
DOWNLOAD
Author : Roberto Battiti
language : en
Publisher: Springer
Release Date : 2017-10-25

Learning And Intelligent Optimization written by Roberto Battiti and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-25 with Computers categories.


This book constitutes the thoroughly refereed post-conference proceedings of the 11th International Conference on Learning and Intelligent Optimization, LION 11, held in Nizhny,Novgorod, Russia, in June 2017. The 20 full papers (among these one GENOPT paper) and 15 short papers presented have been carefully reviewed and selected from 73 submissions. The papers explore the advanced research developments in such interconnected fields as mathematical programming, global optimization, machine learning, and artificial intelligence. Special focus is given to advanced ideas, technologies, methods, and applications in optimization and machine learning.



Introduction To Online Convex Optimization Second Edition


Introduction To Online Convex Optimization Second Edition
DOWNLOAD
Author : Elad Hazan
language : en
Publisher: MIT Press
Release Date : 2022-09-06

Introduction To Online Convex Optimization Second Edition written by Elad Hazan and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-06 with Computers categories.


New edition of a graduate-level textbook on that focuses on online convex optimization, a machine learning framework that views optimization as a process. In many practical applications, the environment is so complex that it is not feasible to lay out a comprehensive theoretical model and use classical algorithmic theory and/or mathematical optimization. Introduction to Online Convex Optimization presents a robust machine learning approach that contains elements of mathematical optimization, game theory, and learning theory: an optimization method that learns from experience as more aspects of the problem are observed. This view of optimization as a process has led to some spectacular successes in modeling and systems that have become part of our daily lives. Based on the “Theoretical Machine Learning” course taught by the author at Princeton University, the second edition of this widely used graduate level text features: Thoroughly updated material throughout New chapters on boosting, adaptive regret, and approachability and expanded exposition on optimization Examples of applications, including prediction from expert advice, portfolio selection, matrix completion and recommendation systems, SVM training, offered throughout Exercises that guide students in completing parts of proofs