Pde Models For Atherosclerosis Computer Implementation In R

DOWNLOAD
Download Pde Models For Atherosclerosis Computer Implementation In R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pde Models For Atherosclerosis Computer Implementation In R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Pde Models For Atherosclerosis Computer Implementation In R
DOWNLOAD
Author : William E. Schiesser
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Pde Models For Atherosclerosis Computer Implementation In R written by William E. Schiesser and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Mathematics categories.
Atherosclerosis is a pathological condition of the arteries in which plaque buildup and stiffening (hardening) can lead to stroke, myocardial infarction (heart attacks), and even death. Cholesterol in the blood is a key marker for atherosclerosis, with two forms: (1) LDL - low density lipoproteins and (2) HDL - high density lipoproteins. Low LDL and high HDL concentrations are generally considered essential for limited atherosclerosis and good health. This book pertains to a mathematical model for the spatiotemporal distribution of LDL and HDL in the arterial endothelial inner layer (EIL, intima). The model consists of a system of six partial differential equations (PDEs) with the dependent variables 1. (,): concentration of modified LDL 2. h(,): concentration of HDL 3. (,): concentration of chemoattractants 4. (,): concentration of ES cytokines 5. (,): density of monocytes/macrophages 6. (,): density of foam cells and independent variables 1. : distance from the inner arterial wall 2. : time The focus of this book is a discussion of the methodology for placing the model on modest computers for study of the numerical solutions. The foam cell density (,) as a function of the bloodstream LDL and HDL concentrations is of particular interest as a precursor for arterial plaque formation and stiffening. The numerical algorithm for the solution of the model PDEs is the method of lines (MOL), a general procedure for the computer-based numerical solution of PDEs. The MOL coding (programming) is in R, a quality, open-source scientific computing system that is readily available from the Internet. The R routines for the PDE model are discussed in detail, and are available from a download link so that the reader/analyst/researcher can execute the model to duplicate the solutions reported in the book, then experiment with the model, for example, by changing the parameters (constants) and extending the model with additional equations. /div/div
Moving Boundary Pde Analysis
DOWNLOAD
Author : William Schiesser
language : en
Publisher: CRC Press
Release Date : 2019-05-29
Moving Boundary Pde Analysis written by William Schiesser and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-29 with Mathematics categories.
Mathematical models stated as systems of partial differential equations (PDEs) are broadly used in biology, chemistry, physics and medicine (physiology). These models describe the spatial and temporial variations of the problem system dependent variables, such as temperature, chemical and biochemical concentrations and cell densities, as a function of space and time (spatiotemporal distributions). For a complete PDE model, initial conditions (ICs) specifying how the problem system starts and boundary conditions (BCs) specifying how the system is defined at its spatial boundaries, must also be included for a well-posed PDE model. In this book, PDE models are considered for which the physical boundaries move with time. For example, as a tumor grows, its boundary moves outward. In atherosclerosis, the plaque formation on the arterial wall moves inward, thereby restricting blood flow with serious consequences such as stroke and myocardial infarction (heart attack). These two examples are considered as applications of the reported moving boundary PDE (MBPDE) numerical method (algorithm). The method is programmed in a set of documented routines coded in R, a quality, open-source scientific programming system. The routines are provided as a download so that the reader/analyst/researcher can use MFPDE models without having to first study numerical methods and computer programming.
Spatiotemporal Modeling Of Influenza
DOWNLOAD
Author : William E. Schiesser
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Spatiotemporal Modeling Of Influenza written by William E. Schiesser and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
This book has a two-fold purpose: (1) An introduction to the computer-based modeling of influenza, a continuing major worldwide communicable disease. (2) The use of (1) as an illustration of a methodology for the computer-based modeling of communicable diseases. For the purposes of (1) and (2), a basic influenza model is formulated as a system of partial differential equations (PDEs) that define the spatiotemporal evolution of four populations: susceptibles, untreated and treated infecteds, and recovereds. The requirements of a well-posed PDE model are considered, including the initial and boundary conditions. The terms of the PDEs are explained. The computer implementation of the model is illustrated with a detailed line-by-line explanation of a system of routines in R (a quality, open-source scientific computing system that is readily available from the Internet). The R routines demonstrate the straightforward numerical solution ofa system of nonlinear PDEs by the method of lines (MOL), an established general algorithm for PDEs. The presentation of the PDE modeling methodology is introductory with a minumum of formal mathematics (no theorems and proofs), and with emphasis on example applications. The intent of the book is to assist in the initial understanding and use of PDE mathematical modeling of communicable diseases, and the explanation and interpretation of the computed model solutions, as illustrated with the influenza model.
Introduction To Statistics Using R
DOWNLOAD
Author : Mustapha Akinkunmi
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Introduction To Statistics Using R written by Mustapha Akinkunmi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Mathematics categories.
Introduction to Statistics Using R is organized into 13 major chapters. Each chapter is broken down into many digestible subsections in order to explore the objectives of the book. There are many real-life practical examples in this book and each of the examples is written in R codes to acquaint the readers with some statistical methods while simultaneously learning R scripts.
Pde Models For Atherosclerosis Computer Implementation In R
DOWNLOAD
Author : William E. Schiesser
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2018-11-07
Pde Models For Atherosclerosis Computer Implementation In R written by William E. Schiesser and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-07 with Mathematics categories.
Atherosclerosis is a pathological condition of the arteries in which plaque buildup and stiffening (hardening) can lead to stroke, myocardial infarction (heart attacks), and even death. Cholesterol in the blood is a key marker for atherosclerosis, with two forms: (1) LDL - low density lipoproteins and (2) HDL - high density lipoproteins. Low LDL and high HDL concentrations are generally considered essential for limited atherosclerosis and good health. This book pertains to a mathematical model for the spatiotemporal distribution of LDL and HDL in the arterial endothelial inner layer (EIL, intima). The model consists of a system of six partial differential equations (PDEs) with the dependent variables 1. ??(??,??): concentration of modified LDL 2. h(??,??): concentration of HDL 3. ??(??,??): concentration of chemoattractants 4. ??(??,??): concentration of ES cytokines 5. ??(??,??): density of monocytes/macrophages 6. ??(??,??): density of foam cells and independent variables 1. ??: distance from the inner arterial wall 2. ??: time The focus of this book is a discussion of the methodology for placing the model on modest computers for study of the numerical solutions. The foam cell density ??(??,??) as a function of the bloodstream LDL and HDL concentrations is of particular interest as a precursor for arterial plaque formation and stiffening. The numerical algorithm for the solution of the model PDEs is the method of lines (MOL), a general procedure for the computer-based numerical solution of PDEs. The MOL coding (programming) is in R, a quality, open-source scientific computing system that is readily available from the Internet. The R routines for the PDE model are discussed in detail, and are available from a download link so that the reader/analyst/researcher can execute the model to duplicate the solutions reported in the book, then experiment with the model, for example, by changing the parameters (constants) and extending the model with additional equations.
Emerging Trends In Immunomodulatory Nanomaterials Toward Cancer Therapy
DOWNLOAD
Author : Anubhab Mukherjee
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Emerging Trends In Immunomodulatory Nanomaterials Toward Cancer Therapy written by Anubhab Mukherjee and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
Recently, immunomodulatory nanomaterials have gained immense attention due to their involvement in the modulation of the body’s immune response to cancer therapy. This book highlights various immunomodulatory nanomaterials (including organic, polymer, inorganic, liposomes, viral, and protein nanoparticles) and their role in cancer therapy. Additionally, the mechanism of immunomodulation is reviewed in detail. Finally, the challenges of these therapies and their future outlook are discussed. We believe this book will be helpful to a broad community including students, researchers, educators, and industrialists.
Exosomes And Micrornas In Biomedical Science
DOWNLOAD
Author : Hamed Mirzaei
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2022-04-21
Exosomes And Micrornas In Biomedical Science written by Hamed Mirzaei and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-21 with Technology & Engineering categories.
MicroRNAs (miRNAs) are a member of the family of non-coding RNA molecules, and consist of small conserved sequences between 19–25 nucleotides in length that are responsible for regulating many cellular functions by affecting a wide range of messenger RNAs in a sequence specific manner. Fundamental biological processes like cell proliferation and growth, stress resistance, tumorigenesis, fat metabolism, and neural development have all been shown to be governed by miRNAs. miRNAs carry out the post-transcriptional silencing of gene expression via targeting the 30-untranslated region (UTR) of the complementary mRNA sequence. The dysregulation of the expression levels of various miRNAs is typical of tumor cells, and has been associated with tumor progression and poor prognosis. Many miRNAs are up-regulated in cancer, where they can silence tumor suppressor genes such as apoptosis and immune response associated genes. Therefore, it is possible to profile the expression levels of miRNAs as biomarkers, in order to diagnose cancer and noncancerous diseases. Moreover, cancer detection in the early stages is crucial in clinical situations. Characterization of miRNAs in serum, plasma, and other bodily fluids, and understanding their stability against RNase degradation, is important to assess their suitability as biomarkers and diagnostic tools. Exosomes play an important role in inter-cellular communications, and these nanosized particles have various functions in diverse physiological pathways, in normal as well as abnormal cells. Exosomes can carry diverse cargos such as mRNAs, miRNAs, and proteins that transfer information between donor and recipient cells. Furthermore, uptake of exosomes and their cargos may promote or suppress various molecular and cellular pathways, which alter the cellular behavior. Many reports have discussed the role of exosomes released from cancer cells on the progression of cancer at various stages. Exosomes and their cargos may affect the growth of the tumor, metastasis, drug resistance, immune system function, as well as angiogenesis. Therefore, exosomes have been explored as diagnostic biomarkers in many cancers. Moreover, exosomes can be used as biological vehicles to deliver different drugs and agents like doxorubicin (DOX), miRNAs, and siRNAs. The present book covers the role of exosomes and micro-RNAs in the pathogenesis and treatment of various diseases.
Nanotechnology For Bioengineers
DOWNLOAD
Author : Wujie Zhang
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Nanotechnology For Bioengineers written by Wujie Zhang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
Nanotechnology is an interdisciplinary field that is rapidly evolving and expanding. Significant advancements have been made in nanotechnology-related disciplines in the past few decades and continued growth and progression in the field are anticipated. Moreover, nanotechnology, omnipresent in innovation, has been applied to resolve critical challenges in nearly every field, especially those related to biological technologies and processes. This book, used as either a textbook for a short course or a reference book, provides state-of-the-art analysis of essential topics in nanotechnology for bioengineers studying and working in biotechnology, chemical/biochemical, pharmaceutical, biomedical, and other related fields. The book topics range from introduction to nanotechnology and nanofabrication to applications of nanotechnology in various biological fields. This book not only intends to introduce bioengineers to the amazing world of nanotechnology, but also inspires them to use nanotechnology to address some of the world's biggest challenges.
3d Electro Rotation Of Single Cells
DOWNLOAD
Author : Guido Buonincontri
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
3d Electro Rotation Of Single Cells written by Guido Buonincontri and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost. However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells. Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "Armillary Sphere" was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis. Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.
Fast Quantitative Magnetic Resonance Imaging
DOWNLOAD
Author : Guido Buonincontri
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Fast Quantitative Magnetic Resonance Imaging written by Guido Buonincontri and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
Among medical imaging modalities, magnetic resonance imaging (MRI) stands out for its excellent soft-tissue contrast, anatomical detail, and high sensitivity for disease detection. However, as proven by the continuous and vast effort to develop new MRI techniques, limitations and open challenges remain. The primary source of contrast in MRI images are the various relaxation parameters associated with the nuclear magnetic resonance (NMR) phenomena upon which MRI is based. Although it is possible to quantify these relaxation parameters (qMRI) they are rarely used in the clinic, and radiological interpretation of images is primarily based upon images that are relaxation time weighted. The clinical adoption of qMRI is mainly limited by the long acquisition times required to quantify each relaxation parameter as well as questions around their accuracy and reliability. More specifically, the main limitations of qMRI methods have been the difficulty in dealing with the high inter-parameter correlations and a high sensitivity to MRI system imperfections. Recently, new methods for rapid qMRI have been proposed. The multi-parametric models at the heart of these techniques have the main advantage of accounting for the correlations between the parameters of interest as well as system imperfections. This holistic view on the MR signal makes it possible to regress many individual parameters at once, potentially with a higher accuracy. Novel, accurate techniques promise a fast estimation of relevant MRI quantities, including but not limited to longitudinal (T1) and transverse (T2) relaxation times. Among these emerging methods, MR Fingerprinting (MRF), synthetic MR (syMRI or MAGIC), and T1‒T2 Shuffling are making their way into the clinical world at a very fast pace. However, the main underlying assumptions and algorithms used are sometimes different from those found in the conventional MRI literature, and can be elusive at times. In this book, we take the opportunity to study and describe the main assumptions, theoretical background, and methods that are the basis of these emerging techniques. Quantitative transient state imaging provides an incredible, transformative opportunity for MRI. There is huge potential to further extend the physics, in conjunction with the underlying physiology, toward a better theoretical description of the underlying models, their application, and evaluation to improve the assessment of disease and treatment efficacy.