[PDF] Regression Methods In Biostatistics - eBooks Review

Regression Methods In Biostatistics


Regression Methods In Biostatistics
DOWNLOAD

Download Regression Methods In Biostatistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regression Methods In Biostatistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Regression Methods In Biostatistics


Regression Methods In Biostatistics
DOWNLOAD
Author : Eric Vittinghoff
language : en
Publisher: Springer Science & Business Media
Release Date : 2012

Regression Methods In Biostatistics written by Eric Vittinghoff and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Education categories.


This fresh edition, substantially revised and augmented, provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics. The examples used, analyzed using Stata, can be applied to other areas.



Regression Methods In Biostatistics


Regression Methods In Biostatistics
DOWNLOAD
Author : Eric Vittinghoff
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-03-06

Regression Methods In Biostatistics written by Eric Vittinghoff and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-06 with Medical categories.


This new book provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes. Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way. The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course in statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided.



Regression Methods In Biostatistics


Regression Methods In Biostatistics
DOWNLOAD
Author : Eric Vittinghoff
language : en
Publisher:
Release Date : 2004

Regression Methods In Biostatistics written by Eric Vittinghoff and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Medicine research-Statistical methods categories.




Statistical Regression Modeling With R


Statistical Regression Modeling With R
DOWNLOAD
Author : Ding-Geng (Din) Chen
language : en
Publisher: Springer Nature
Release Date : 2021-04-08

Statistical Regression Modeling With R written by Ding-Geng (Din) Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with Mathematics categories.


This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.



Nonparametric Regression Methods For Longitudinal Data Analysis


Nonparametric Regression Methods For Longitudinal Data Analysis
DOWNLOAD
Author : Hulin Wu
language : en
Publisher: John Wiley & Sons
Release Date : 2006-05-12

Nonparametric Regression Methods For Longitudinal Data Analysis written by Hulin Wu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-12 with Mathematics categories.


Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.



Robust Methods In Biostatistics


Robust Methods In Biostatistics
DOWNLOAD
Author : Stephane Heritier
language : en
Publisher: John Wiley & Sons
Release Date : 2009-05-11

Robust Methods In Biostatistics written by Stephane Heritier and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-05-11 with Medical categories.


Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression Generalized linear models Linear mixed models Marginal longitudinal data models Cox survival analysis model The methods are introduced both at a theoretical and applied level within the framework of each general class of models, with a particular emphasis put on practical data analysis. This book is of particular use for research students,applied statisticians and practitioners in the health field interested in more stable statistical techniques. An accompanying website provides R code for computing all of the methods described, as well as for analyzing all the datasets used in the book.



Bayesian And Frequentist Regression Methods


Bayesian And Frequentist Regression Methods
DOWNLOAD
Author : Jon Wakefield
language : en
Publisher: Springer
Release Date : 2016-04-01

Bayesian And Frequentist Regression Methods written by Jon Wakefield and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-01 with categories.


This book provides a balanced, modern introduction to Bayesian and frequentist methods for regression analysis. The author discusses Frequentist and Bayesian Inferences; Linear Models; Binary Data Models; General Regression Models and Survival Models.



Essential Statistical Methods For Medical Statistics


Essential Statistical Methods For Medical Statistics
DOWNLOAD
Author : J. Philip Miller
language : en
Publisher: Elsevier
Release Date : 2010-11-08

Essential Statistical Methods For Medical Statistics written by J. Philip Miller and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-08 with Mathematics categories.


Essential Statistical Methods for Medical Statistics presents only key contributions which have been selected from the volume in the Handbook of Statistics: Medical Statistics, Volume 27 (2009). While the use of statistics in these fields has a long and rich history, the explosive growth of science in general, and of clinical and epidemiological sciences in particular, has led to the development of new methods and innovative adaptations of standard methods. This volume is appropriately focused for individuals working in these fields. Contributors are internationally renowned experts in their respective areas. - Contributors are internationally renowned experts in their respective areas - Addresses emerging statistical challenges in epidemiological, biomedical, and pharmaceutical research - Methods for assessing Biomarkers, analysis of competing risks - Clinical trials including sequential and group sequential, crossover designs, cluster randomized, and adaptive designs - Structural equations modelling and longitudinal data analysis



Applications Of Regression Models In Epidemiology


Applications Of Regression Models In Epidemiology
DOWNLOAD
Author : Erick Suárez
language : en
Publisher: John Wiley & Sons
Release Date : 2017-02-28

Applications Of Regression Models In Epidemiology written by Erick Suárez and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-28 with Mathematics categories.


A one-stop guide for public health students and practitioners learning the applications of classical regression models in epidemiology This book is written for public health professionals and students interested in applying regression models in the field of epidemiology. The academic material is usually covered in public health courses including (i) Applied Regression Analysis, (ii) Advanced Epidemiology, and (iii) Statistical Computing. The book is composed of 13 chapters, including an introduction chapter that covers basic concepts of statistics and probability. Among the topics covered are linear regression model, polynomial regression model, weighted least squares, methods for selecting the best regression equation, and generalized linear models and their applications to different epidemiological study designs. An example is provided in each chapter that applies the theoretical aspects presented in that chapter. In addition, exercises are included and the final chapter is devoted to the solutions of these academic exercises with answers in all of the major statistical software packages, including STATA, SAS, SPSS, and R. It is assumed that readers of this book have a basic course in biostatistics, epidemiology, and introductory calculus. The book will be of interest to anyone looking to understand the statistical fundamentals to support quantitative research in public health. In addition, this book: • Is based on the authors’ course notes from 20 years teaching regression modeling in public health courses • Provides exercises at the end of each chapter • Contains a solutions chapter with answers in STATA, SAS, SPSS, and R • Provides real-world public health applications of the theoretical aspects contained in the chapters Applications of Regression Models in Epidemiology is a reference for graduate students in public health and public health practitioners. ERICK SUÁREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. He received a Ph.D. degree in Medical Statistics from the London School of Hygiene and Tropical Medicine. He has 29 years of experience teaching biostatistics. CYNTHIA M. PÉREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. She received an M.S. degree in Statistics and a Ph.D. degree in Epidemiology from Purdue University. She has 22 years of experience teaching epidemiology and biostatistics. ROBERTO RIVERA is an Associate Professor at the College of Business at the University of Puerto Rico at Mayaguez. He received a Ph.D. degree in Statistics from the University of California in Santa Barbara. He has more than five years of experience teaching statistics courses at the undergraduate and graduate levels. MELISSA N. MARTÍNEZ is an Account Supervisor at Havas Media International. She holds an MPH in Biostatistics from the University of Puerto Rico and an MSBA from the National University in San Diego, California. For the past seven years, she has been performing analyses for the biomedical research and media advertising fields.



Linear Models In Statistics


Linear Models In Statistics
DOWNLOAD
Author : Alvin C. Rencher
language : en
Publisher: John Wiley & Sons
Release Date : 2008-01-07

Linear Models In Statistics written by Alvin C. Rencher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-07 with Mathematics categories.


The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.