Robust Regression

DOWNLOAD
Download Robust Regression PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust Regression book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Robust Regression
DOWNLOAD
Author : Kenneth D. Lawrence
language : en
Publisher: Routledge
Release Date : 2019-05-20
Robust Regression written by Kenneth D. Lawrence and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Mathematics categories.
Robust Regression: Analysis and Applications characterizes robust estimators in terms of how much they weight each observation discusses generalized properties of Lp-estimators. Includes an algorithm for identifying outliers using least absolute value criterion in regression modeling reviews redescending M-estimators studies Li linear regression proposes the best linear unbiased estimators for fixed parameters and random errors in the mixed linear model summarizes known properties of Li estimators for time series analysis examines ordinary least squares, latent root regression, and a robust regression weighting scheme and evaluates results from five different robust ridge regression estimators.
Robust Nonlinear Regression
DOWNLOAD
Author : Hossein Riazoshams
language : en
Publisher: John Wiley & Sons
Release Date : 2018-08-20
Robust Nonlinear Regression written by Hossein Riazoshams and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-20 with Mathematics categories.
The first book to discuss robust aspects of nonlinear regression—with applications using R software Robust Nonlinear Regression: with Applications using R covers a variety of theories and applications of nonlinear robust regression. It discusses both parts of the classic and robust aspects of nonlinear regression and focuses on outlier effects. It develops new methods in robust nonlinear regression and implements a set of objects and functions in S-language under SPLUS and R software. The software covers a wide range of robust nonlinear fitting and inferences, and is designed to provide facilities for computer users to define their own nonlinear models as an object, and fit models using classic and robust methods as well as detect outliers. The implemented objects and functions can be applied by practitioners as well as researchers. The book offers comprehensive coverage of the subject in 9 chapters: Theories of Nonlinear Regression and Inference; Introduction to R; Optimization; Theories of Robust Nonlinear Methods; Robust and Classical Nonlinear Regression with Autocorrelated and Heteroscedastic errors; Outlier Detection; R Packages in Nonlinear Regression; A New R Package in Robust Nonlinear Regression; and Object Sets. The first comprehensive coverage of this field covers a variety of both theoretical and applied topics surrounding robust nonlinear regression Addresses some commonly mishandled aspects of modeling R packages for both classical and robust nonlinear regression are presented in detail in the book and on an accompanying website Robust Nonlinear Regression: with Applications using R is an ideal text for statisticians, biostatisticians, and statistical consultants, as well as advanced level students of statistics.
Robust Regression And Outlier Detection
DOWNLOAD
Author : Peter J. Rousseeuw
language : en
Publisher: John Wiley & Sons
Release Date : 2005-02-25
Robust Regression And Outlier Detection written by Peter J. Rousseeuw and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-02-25 with Mathematics categories.
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "The writing style is clear and informal, and much of thediscussion is oriented to application. In short, the book is akeeper." –Mathematical Geology "I would highly recommend the addition of this book to thelibraries of both students and professionals. It is a usefultextbook for the graduate student, because it emphasizes both thephilosophy and practice of robustness in regression settings, andit provides excellent examples of precise, logical proofs oftheorems. . . .Even for those who are familiar with robustness, thebook will be a good reference because it consolidates the researchin high-breakdown affine equivariant estimators and includes anextensive bibliography in robust regression, outlier diagnostics,and related methods. The aim of this book, the authors tell us, is‘to make robust regression available for everyday statisticalpractice.’ Rousseeuw and Leroy have included all of thenecessary ingredients to make this happen." –Journal of the American Statistical Association
Robust Diagnostic Regression Analysis
DOWNLOAD
Author : Anthony Curtis Atkinson
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-08-11
Robust Diagnostic Regression Analysis written by Anthony Curtis Atkinson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-08-11 with Business & Economics categories.
Graphs are used to understand the relationship between a regression model and the data to which it is fitted. The authors develop new, highly informative graphs for the analysis of regression data and for the detection of model inadequacies. As well as illustrating new procedures, the authors develop the theory of the models used, particularly for generalized linear models. The book provides statisticians and scientists with a new set of tools for data analysis. Software to produce the plots is available on the authors website.
Modern Methods For Robust Regression
DOWNLOAD
Author : Robert Andersen
language : en
Publisher: SAGE
Release Date : 2008
Modern Methods For Robust Regression written by Robert Andersen and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.
Modern Methods For Robust Regression
DOWNLOAD
Author : Robert Andersen
language : en
Publisher: SAGE Publications
Release Date : 2007-09-06
Modern Methods For Robust Regression written by Robert Andersen and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-06 with Social Science categories.
Modern Methods for Robust Regression offers a brief but in-depth treatment of various methods for detecting and properly handling influential cases in regression analysis. This volume, geared toward both future and practicing social scientists, is unique in that it takes an applied approach and offers readers empirical examples to illustrate key concepts. It is ideal for readers who are interested in the issues related to outliers and influential cases. Key Features Defines key terms necessary to understanding the robustness of an estimator: Because they form the basis of robust regression techniques, the book also deals with various measures of location and scale. Addresses the robustness of validity and efficiency: After having described the robustness of validity for an estimator, the author discusses its efficiency. Focuses on the impact of outliers: The book compares the robustness of a wide variety of estimators that attempt to limit the influence of unusual observations. Gives an overview of some traditional techniques: Both formal statistical tests and graphical methods detect influential cases in the general linear model. Offers a Web appendix: This volume provides readers with the data and the R code for the examples used in the book. Intended Audience This is an excellent text for intermediate and advanced Quantitative Methods and Statistics courses offered at the graduate level across the social sciences.
Developments In Robust Statistics
DOWNLOAD
Author : Rudolf Dutter
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Developments In Robust Statistics written by Rudolf Dutter and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.
Introduction To Robust Estimation And Hypothesis Testing
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Academic Press
Release Date : 2011-12-14
Introduction To Robust Estimation And Hypothesis Testing written by Rand R. Wilcox and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-14 with Mathematics categories.
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. - Covers latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software
Robust Statistics
DOWNLOAD
Author : Ricardo A. Maronna
language : en
Publisher: John Wiley & Sons
Release Date : 2019-01-04
Robust Statistics written by Ricardo A. Maronna and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Mathematics categories.
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Directions In Robust Statistics And Diagnostics
DOWNLOAD
Author : Werner Stahel
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Directions In Robust Statistics And Diagnostics written by Werner Stahel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This IMA Volume in Mathematics and its Applications DIRECTIONS IN ROBUST STATISTICS AND DIAGNOSTICS is based on the proceedings of the first four weeks of the six week IMA 1989 summer program "Robustness, Diagnostics, Computing and Graphics in Statistics". An important objective of the organizers was to draw a broad set of statisticians working in robustness or diagnostics into collaboration on the challenging problems in these areas, particularly on the interface between them. We thank the organizers of the robustness and diagnostics program Noel Cressie, Thomas P. Hettmansperger, Peter J. Huber, R. Douglas Martin, and especially Werner Stahel and Sanford Weisberg who edited the proceedings. A vner Friedman Willard Miller, Jr. PREFACE Central themes of all statistics are estimation, prediction, and making decisions under uncertainty. A standard approach to these goals is through parametric mod elling. Parametric models can give a problem sufficient structure to allow standard, well understood paradigms to be applied to make the required inferences. If, how ever, the parametric model is not completely correct, then the standard inferential methods may not give reasonable answers. In the last quarter century, particularly with the advent of readily available computing, more attention has been paid to the problem of inference when the parametric model used is not correctly specified.