Statistical Modeling For Biological Systems

DOWNLOAD
Download Statistical Modeling For Biological Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Modeling For Biological Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistical Modeling For Biological Systems
DOWNLOAD
Author : Anthony Almudevar
language : en
Publisher: Springer Nature
Release Date : 2020-03-11
Statistical Modeling For Biological Systems written by Anthony Almudevar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-11 with Medical categories.
This book commemorates the scientific contributions of distinguished statistician, Andrei Yakovlev. It reflects upon Dr. Yakovlev’s many research interests including stochastic modeling and the analysis of micro-array data, and throughout the book it emphasizes applications of the theory in biology, medicine and public health. The contributions to this volume are divided into two parts. Part A consists of original research articles, which can be roughly grouped into four thematic areas: (i) branching processes, especially as models for cell kinetics, (ii) multiple testing issues as they arise in the analysis of biologic data, (iii) applications of mathematical models and of new inferential techniques in epidemiology, and (iv) contributions to statistical methodology, with an emphasis on the modeling and analysis of survival time data. Part B consists of methodological research reported as a short communication, ending with some personal reflections on research fields associated with Andrei and on his approach to science. The Appendix contains an abbreviated vitae and a list of Andrei’s publications, complete as far as we know. The contributions in this book are written by Dr. Yakovlev’s collaborators and notable statisticians including former presidents of the Institute of Mathematical Statistics and of the Statistics Section of the AAAS. Dr. Yakovlev’s research appeared in four books and almost 200 scientific papers, in mathematics, statistics, biomathematics and biology journals. Ultimately this book offers a tribute to Dr. Yakovlev’s work and recognizes the legacy of his contributions in the biostatistics community.
Statistical Modeling And Machine Learning For Molecular Biology
DOWNLOAD
Author : Alan Moses
language : en
Publisher: CRC Press
Release Date : 2017-01-06
Statistical Modeling And Machine Learning For Molecular Biology written by Alan Moses and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-06 with Computers categories.
• Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics
Handbook Of Statistical Systems Biology
DOWNLOAD
Author : Michael Stumpf
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-09
Handbook Of Statistical Systems Biology written by Michael Stumpf and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-09 with Science categories.
Systems Biology is now entering a mature phase in which the key issues are characterising uncertainty and stochastic effects in mathematical models of biological systems. The area is moving towards a full statistical analysis and probabilistic reasoning over the inferences that can be made from mathematical models. This handbook presents a comprehensive guide to the discipline for practitioners and educators, in providing a full and detailed treatment of these important and emerging subjects. Leading experts in systems biology and statistics have come together to provide insight in to the major ideas in the field, and in particular methods of specifying and fitting models, and estimating the unknown parameters. This book: Provides a comprehensive account of inference techniques in systems biology. Introduces classical and Bayesian statistical methods for complex systems. Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems. Discusses various applications for statistical systems biology, such as gene regulation and signal transduction. Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies. Presents an in-depth presentation of reverse engineering approaches. Provides colour illustrations to explain key concepts. This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field.
Stochastic Modelling For Systems Biology Third Edition
DOWNLOAD
Author : Darren J. Wilkinson
language : en
Publisher: CRC Press
Release Date : 2018-12-07
Stochastic Modelling For Systems Biology Third Edition written by Darren J. Wilkinson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-07 with Mathematics categories.
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Systems Biology
DOWNLOAD
Author : Jinzhi Lei
language : en
Publisher: Springer Nature
Release Date : 2021-05-13
Systems Biology written by Jinzhi Lei and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-13 with Mathematics categories.
This book discusses the mathematical simulation of biological systems, with a focus on the modeling of gene expression, gene regulatory networks and stem cell regeneration. The diffusion of morphogens is addressed by introducing various reaction-diffusion equations based on different hypotheses concerning the process of morphogen gradient formation. The robustness of steady-state gradients is also covered through boundary value problems. The introduction gives an overview of the relevant biological concepts (cells, DNA, organism development) and provides the requisite mathematical preliminaries on continuous dynamics and stochastic modeling. A basic understanding of calculus is assumed. The techniques described in this book encompass a wide range of mechanisms, from molecular behavior to population dynamics, and the inclusion of recent developments in the literature together with first-hand results make it an ideal reference for both new students and experienced researchers in the field of systems biology and applied mathematics.
Analysis Of Biological Systems
DOWNLOAD
Author : Corrado Priami
language : en
Publisher: World Scientific
Release Date : 2015-01-29
Analysis Of Biological Systems written by Corrado Priami and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-29 with Science categories.
Modeling is fast becoming fundamental to understanding the processes that define biological systems. High-throughput technologies are producing increasing quantities of data that require an ever-expanding toolset for their effective analysis and interpretation. Analysis of high-throughput data in the context of a molecular interaction network is particularly informative as it has the potential to reveal the most relevant network modules with respect to a phenotype or biological process of interest.Analysis of Biological Systems collects classical material on analysis, modeling and simulation, thereby acting as a unique point of reference. The joint application of statistical techniques to extract knowledge from big data and map it into mechanistic models is a current challenge of the field, and the reader will learn how to build and use models even if they have no computing or math background. An in-depth analysis of the currently available technologies, and a comparison between them, is also included. Unlike other reference books, this in-depth analysis is extended even to the field of language-based modeling. The overall result is an indispensable, self-contained and systematic approach to a rapidly expanding field of science.
Computer Simulation And Data Analysis In Molecular Biology And Biophysics
DOWNLOAD
Author : Victor Bloomfield
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-06-05
Computer Simulation And Data Analysis In Molecular Biology And Biophysics written by Victor Bloomfield and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-05 with Science categories.
This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive.
Modeling Life
DOWNLOAD
Author : Alan Garfinkel
language : en
Publisher: Springer
Release Date : 2017-09-06
Modeling Life written by Alan Garfinkel and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-06 with Mathematics categories.
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Statistical Methods In Biology
DOWNLOAD
Author : S.J. Welham
language : en
Publisher: CRC Press
Release Date : 2014-08-22
Statistical Methods In Biology written by S.J. Welham and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-22 with Mathematics categories.
Written in simple language with relevant examples, this illustrative introductory book presents best practices in experimental design and simple data analysis. Taking a practical and intuitive approach, it only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R.
Dynamical Systems For Biological Modeling
DOWNLOAD
Author : Fred Brauer
language : en
Publisher:
Release Date : 2024-10-14
Dynamical Systems For Biological Modeling written by Fred Brauer and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-14 with Mathematics categories.
This book prepares both biology and mathematics students with the understanding and techniques necessary to undertake basic modeling of biological systems. Its approach emphasizes qualitative ideas rather than explicit computations and does not overwhelm students with precise technical details. The book discusses a variety of biological modeling