Study Of Generative Artificial Intelligence With Machine Learning And Deep Learning

DOWNLOAD
Download Study Of Generative Artificial Intelligence With Machine Learning And Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Study Of Generative Artificial Intelligence With Machine Learning And Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Study Of Generative Artificial Intelligence With Machine Learning And Deep Learning
DOWNLOAD
Author : Dr. Mohammed Inamur Rahman
language : en
Publisher: Academic Guru Publishing House
Release Date : 2025-02-10
Study Of Generative Artificial Intelligence With Machine Learning And Deep Learning written by Dr. Mohammed Inamur Rahman and has been published by Academic Guru Publishing House this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-10 with Study Aids categories.
“Study of Generative Artificial Intelligence with Machine Learning and Deep Learning” provides an insightful journey into the world of Generative AI, covering its theoretical foundations, practical implementations, and emerging trends. This book is structured to offer a progressive learning experience, beginning with fundamental AI concepts and advancing toward sophisticated generative techniques. The book is divided into nine well-organised chapters. It starts with an introduction to Generative AI, explaining its principles, evolution, and ethical considerations. This is followed by a deep dive into machine learning and deep learning fundamentals, setting the groundwork for understanding generative models. Subsequent chapters introduce readers to generative models, discussing their importance, various concepts such as latent variables and Bayesian methods, and applications in data simulation. The book further explores advanced generative AI Autoencoders, techniques, Generative including Adversarial Variational Networks, Transformers, and Diffusion Models, providing practical insights into their working mechanisms. A dedicated section examines the role of machine learning and deep learning in enhancing generative models, discussing hybrid approaches, training challenges, and breakthroughs in AI-generated images and text. Ethical, legal, and security concerns are critically analysed, addressing issues such as AI bias, misinformation, and regulatory complexities. Concluding with a discussion on the future of Generative AI, the book speculates on Artificial General Intelligence, autonomous AI agents, and humanoid robots, presenting a visionary outlook on AI’s limitless potential. This book serves as a valuable reference for students, researchers, and industry professionals seeking to understand, develop, and apply Generative AI effectively.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Artificial Intelligence With Python
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-01-27
Artificial Intelligence With Python written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-27 with Computers categories.
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Machine Learning And Deep Learning In Real Time Applications
DOWNLOAD
Author : Paawan Sharma
language : en
Publisher: Engineering Science Reference
Release Date : 2020
Machine Learning And Deep Learning In Real Time Applications written by Paawan Sharma and has been published by Engineering Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Generative Deep Learning
DOWNLOAD
Author : David Foster
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-06-28
Generative Deep Learning written by David Foster and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-28 with Computers categories.
Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Artificial Intelligence Machine Learning And Deep Learning For Sustainable Industry 5 0
DOWNLOAD
Author : Nitin Liladhar Rane
language : en
Publisher: Deep Science Publishing
Release Date : 2024-10-14
Artificial Intelligence Machine Learning And Deep Learning For Sustainable Industry 5 0 written by Nitin Liladhar Rane and has been published by Deep Science Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-14 with Computers categories.
This book offers an insight into the applications of Artificial Intelligence (AI)- Machine Learning Algorithms and Deep Learning (DL) in Bigdata Analytics to Industry 4.0/5.0 and Society 5.0 with transformative power responsibly. It has delved into how these technologies are disrupting industries, fostering innovation, and solving age-old social problems-so that readers have an understanding of where the digital world is headed. These chapters cover the big picture subjects of using AI with Big data analytics aimed mostly at increasing industrial efficiency, healthcare optimization, retail transformation, construction industry transformation, autonomous vehicles development and environmental sustainability improvement. The book covers each of these technologies extensively applied to full chapters devoted to detail studies, methodologies and practical usages. One of the central concepts in the book is how we evolve from industry 4.0 to industry 5.0. Therefore, Industry 4.0 relies on the automation and data exchange in manufacturing technologies using cyber-physical systems, the Internet of Things and cloud computing route to intelligent factories. During this phase, it improves operational efficiency, predictive maintenance and real-time monitoring which lowers down time and other operating costs by considerable amount. As industries move towards Industry 5.0, a lot has been noted-human-oriented solutions that combine human creativity and intelligence with highly automated and distributed technological tools. More cooperation between humans and machines during such times will, therefore, result in more customized production aimed at sustainable processes. The book details how, thanks to digital twins-that is, innumerable virtual replicas of physical systems-the further step is taken, allowing for real-time data analysis and, consequently innovative ways of manufacturing where the interests of the workers and customers come first. The present book discusses how AI and big data analytics transcend industrial applications to meet more societal ends as society ushers in its fifth revolution. Society 5.0 postulates that a super-smart digital society will drive transformation in all aspects of life, ranging from health and education to planning urban resources and infrastructure and ensuring public safety. The combination of AI with Big Data makes personalized healthcare services possible, competent resource planning in cities, and environmental sustainability in place via predictive analytics or simulation models. One such industry in which significant changes are coming, according to AI and Big Data analytics, is healthcare. This book shows how these technologies improve diagnostic accuracy, enable personalized treatment plans, and optimize resource allocations. Predictive insights can predict outbreaks and admissions, which helps better preparedness against diseases and also optimizes health resource utilization. AI in medical imaging and anomaly detection strengthens the efficiency of professional health experts, thus delivering better patient outcomes. AI and big data analytics have further remodelled the retail industry by providing retailers profound insights into consumer behaviour and preferences. With this information, retailers can adopt person-segmented marketing techniques and optimize inventory levels while enabling high levels of customer service using AI-fuelled chatbots and virtual assistants. These technologies help retailers stay competitive in an ever-developing market environment by offering solutions structured based on individual needs expressed by customers. AI and big data analytics combine to form one synergy connected with autonomous vehicles. It further goes on to discuss the huge amount of data needed for training these AI models and big data analytics in refining the accuracy and safety of autonomous driving systems. Another critical area in which AI and Big Data Analytics make a considerable impact is environmental sustainability. By applying these analyses to large data sets relating to climatic changes, energy consumption, and natural resources, AI models can establish trends and recognize patterns indicating future changes. This predictive ability equips organizations and governments with tools to develop lower environmental footprints and promote sustainable practices proactively. It further explains AI-enabled energy management systems that drive optimized energy use in buildings to reduce carbon emissions and save on associated costs. This certainly looks like something for a vast readership: it speaks more to academics, professionals working in the industry, and decision-makers-but, really, to anybody who seeks to grasp the transformative powerfulness of AI and big data analytics. This source will provide information on overall guidance and a rich source of inspiration in using these technologies to enable innovation and sustainable development across different sectors. Actual case examples and practical applications are given to convey the knowledge and elements that readers need to know as they go about using AI and big data analytics. This book also includes discussions concerning the dynamic policy and regulatory scenes of AI, pointing out that it is necessary to have standard policies that should be implemented to have ethical deployment of AI that reduces risks. This book also focuses on challenges in implementing AI for intelligent and sustainable industries, meaning technical, ethical, and operational barriers. It outlines high costs, low-quality data, and the need for skilled professionals; ethical concerns and robust cybersecurity measures become necessary. As such, this book will engross an audience ranging from academics to industry professionals and policymakers working toward understanding and using AI and big data for sustainable development and technological advancement.
Federated Learning Systems
DOWNLOAD
Author : Muhammad Habib ur Rehman
language : en
Publisher: Springer Nature
Release Date : 2021-06-11
Federated Learning Systems written by Muhammad Habib ur Rehman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-11 with Technology & Engineering categories.
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Applied Machine Learning And Deep Learning Architectures And Techniques
DOWNLOAD
Author : Nitin Liladhar Rane
language : en
Publisher: Deep Science Publishing
Release Date : 2024-10-13
Applied Machine Learning And Deep Learning Architectures And Techniques written by Nitin Liladhar Rane and has been published by Deep Science Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-13 with Computers categories.
This book provides an extensive overview of recent advances in machine learning (ML) and deep learning (DL). It starts with a comprehensive introduction to the latest architectural and design practices, with an overview of basic techniques and optimization algorithms and methodologies that are fundamental to modern ML/DL development followed by the tools and frameworks that are driving innovation in ML/DL. The presentation then points to the central position of ML and DL in developing generative AI like ChatGPT. Then look at different industrial applications such as explaining the real-world impacts of each. This includes challenges around corroborate artificial Intelligence (AI), and trustworthy AI, and so on. Finally, the book presents a futuristic vision on the potentials and implications of future ML and DL architectures, making it an ideal guide for researchers, practitioners and industry professionals. This book will be a significant resource for comprehending present advancements, addressing encounter challenges, and traversing the ML and DL landscape in future, making it an indispensable reference for anyone interested in applying these technologies across sectors.
Artificial Intelligence
DOWNLOAD
Author : Stuart Russell
language : en
Publisher:
Release Date : 2016-05-05
Artificial Intelligence written by Stuart Russell and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-05 with categories.
For one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence. The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence.