Theory Of 2 Inner Product Spaces

DOWNLOAD
Download Theory Of 2 Inner Product Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theory Of 2 Inner Product Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Theory Of 2 Inner Product Spaces
DOWNLOAD
Author : Yeol Je Cho
language : en
Publisher: Nova Publishers
Release Date : 2001
Theory Of 2 Inner Product Spaces written by Yeol Je Cho and has been published by Nova Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
The purpose of this book is to give systematic and comprehensive presentation of theory of n-metric spaces, linear n-normed spaces and n-inner product spaces (and so 2-metric spaces, linear 2-normed spaces and 2-linner product spaces n=2). Since 1963 and 1965, S. Gahler published two papers entitled "2-metrische Raume und ihr topologische Strukhur" and "Lineare 2-normierte Raume", a number of authors have done considerable works on geometric structures of 2-metric spaces and linear 2-normed spaces, and have applied these spaces to several fields of mathematics in many ways. In 1969, S. Gahler introduced also the concept of n metric spaces in a series of his papers entitled "Untersuchungen uber verallemeinerte n-metriscke Raume 1, II, III", which extend the concept of 2-metric spaces to the general case, and provided many properties of topological and geometrical structures. Recently, A. Misiak introduced the concept of n-inner product spaces and extended many results in 2 inner product spaces,which in turn were introduced and studied by C. Diminnie, S. Gahler and A. White, to n-inner product spaces in his doctoral dissertation. This book contains, in short, the latest results on 2-metric spaces and linear 2-normed spaces, 2-inner product spaces, G-inner product spaces, strict convexity and uniform convexity, orthogonal relations, quadratic sets on modules and n-inner product spaces. It is hoped that this book will be devoted to a stimulation of interest in further exploration and to the possible applications in various other branches of mathematics.
Linear Algebra Done Right
DOWNLOAD
Author : Sheldon Axler
language : en
Publisher: Springer Science & Business Media
Release Date : 1997-07-18
Linear Algebra Done Right written by Sheldon Axler and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-07-18 with Mathematics categories.
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Norm Derivatives And Characterizations Of Inner Product Spaces
DOWNLOAD
Author : Claudi Alsina
language : en
Publisher: World Scientific
Release Date : 2010
Norm Derivatives And Characterizations Of Inner Product Spaces written by Claudi Alsina and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
The book provides a comprehensive overview of the characterizations of real normed spaces as inner product spaces based on norm derivatives and generalizations of the most basic geometrical properties of triangles in normed spaces. Since the appearance of Jordanvon Neumann's classical theorem (The Parallelogram Law) in 1935, the field of characterizations of inner product spaces has received a significant amount of attention in various literature texts. Moreover, the techniques arising in the theory of functional equations have shown to be extremely useful in solving key problems in the characterizations of Banach spaces as Hilbert spaces. This book presents, in a clear and detailed style, state-of-the-art methods of characterizing inner product spaces by means of norm derivatives. It brings together results that have been scattered in various publications over the last two decades and includes more new material and techniques for solving functional equations in normed spaces. Thus the book can serve as an advanced undergraduate or graduate text as well as a resource book for researchers working in geometry of Banach (Hilbert) spaces or in the theory of functional equations (and their applications).
Mathematical Analysis And Applications
DOWNLOAD
Author : Michael Ruzhansky
language : en
Publisher: John Wiley & Sons
Release Date : 2018-04-11
Mathematical Analysis And Applications written by Michael Ruzhansky and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-11 with Mathematics categories.
An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors—a noted team of international researchers in the field— highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.
Best Approximation In Inner Product Spaces
DOWNLOAD
Author : Frank Deutsch
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-04-20
Best Approximation In Inner Product Spaces written by Frank Deutsch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-04-20 with Computers categories.
This book evolved from notes originally developed for a graduate course, "Best Approximation in Normed Linear Spaces," that I began giving at Penn State Uni versity more than 25 years ago. It soon became evident. that many of the students who wanted to take the course (including engineers, computer scientists, and statis ticians, as well as mathematicians) did not have the necessary prerequisites such as a working knowledge of Lp-spaces and some basic functional analysis. (Today such material is typically contained in the first-year graduate course in analysis. ) To accommodate these students, I usually ended up spending nearly half the course on these prerequisites, and the last half was devoted to the "best approximation" part. I did this a few times and determined that it was not satisfactory: Too much time was being spent on the presumed prerequisites. To be able to devote most of the course to "best approximation," I decided to concentrate on the simplest of the normed linear spaces-the inner product spaces-since the theory in inner product spaces can be taught from first principles in much less time, and also since one can give a convincing argument that inner product spaces are the most important of all the normed linear spaces anyway. The success of this approach turned out to be even better than I had originally anticipated: One can develop a fairly complete theory of best approximation in inner product spaces from first principles, and such was my purpose in writing this book.
Beginning Functional Analysis
DOWNLOAD
Author : Karen Saxe
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Beginning Functional Analysis written by Karen Saxe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
This book is designed as a text for a first course on functional analysis for ad vanced undergraduates or for beginning graduate students. It can be used in the undergraduate curriculum for an honors seminar, or for a "capstone" course. It can also be used for self-study or independent study. The course prerequisites are few, but a certain degree of mathematical sophistication is required. A reader must have had the equivalent of a first real analysis course, as might be taught using [25] or [109], and a first linear algebra course. Knowledge of the Lebesgue integral is not a prerequisite. Throughout the book we use elementary facts about the complex numbers; these are gathered in Appendix A. In one spe cific place (Section 5.3) we require a few properties of analytic functions. These are usually taught in the first half of an undergraduate complex analysis course. Because we want this book to be accessible to students who have not taken a course on complex function theory, a complete description of the needed results is given. However, we do not prove these results.
Indefinite Inner Product Spaces Schur Analysis And Differential Equations
DOWNLOAD
Author : Daniel Alpay
language : en
Publisher: Birkhäuser
Release Date : 2018-01-30
Indefinite Inner Product Spaces Schur Analysis And Differential Equations written by Daniel Alpay and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-30 with Mathematics categories.
This volume, which is dedicated to Heinz Langer, includes biographical material and carefully selected papers. Heinz Langer has made fundamental contributions to operator theory. In particular, he has studied the domains of operator pencils and nonlinear eigenvalue problems, the theory of indefinite inner product spaces, operator theory in Pontryagin and Krein spaces, and applications to mathematical physics. His works include studies on and applications of Schur analysis in the indefinite setting, where the factorization theorems put forward by Krein and Langer for generalized Schur functions, and by Dijksma-Langer-Luger-Shondin, play a key role. The contributions in this volume reflect Heinz Langer’s chief research interests and will appeal to a broad readership whose work involves operator theory.
Geometry Of Linear 2 Normed Spaces
DOWNLOAD
Author : Raymond W. Freese
language : en
Publisher: Nova Publishers
Release Date : 2001
Geometry Of Linear 2 Normed Spaces written by Raymond W. Freese and has been published by Nova Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
Groups Matrices And Vector Spaces
DOWNLOAD
Author : James B. Carrell
language : en
Publisher: Springer
Release Date : 2017-09-02
Groups Matrices And Vector Spaces written by James B. Carrell and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-02 with Mathematics categories.
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.
An Introduction To Hilbert Space
DOWNLOAD
Author : N. Young
language : en
Publisher: Cambridge University Press
Release Date : 1988-07-21
An Introduction To Hilbert Space written by N. Young and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-07-21 with Mathematics categories.
This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.