Transparency And Interpretability For Learned Representations Of Artificial Neural Networks

DOWNLOAD
Download Transparency And Interpretability For Learned Representations Of Artificial Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Transparency And Interpretability For Learned Representations Of Artificial Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Transparency And Interpretability For Learned Representations Of Artificial Neural Networks
DOWNLOAD
Author : Richard Meyes
language : en
Publisher: Springer Nature
Release Date : 2022-11-26
Transparency And Interpretability For Learned Representations Of Artificial Neural Networks written by Richard Meyes and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-26 with Computers categories.
Artificial intelligence (AI) is a concept, whose meaning and perception has changed considerably over the last decades. Starting off with individual and purely theoretical research efforts in the 1950s, AI has grown into a fully developed research field of modern times and may arguably emerge as one of the most important technological advancements of mankind. Despite these rapid technological advancements, some key questions revolving around the matter of transparency, interpretability and explainability of an AI’s decision-making remain unanswered. Thus, a young research field coined with the general term Explainable AI (XAI) has emerged from increasingly strict requirements for AI to be used in safety critical or ethically sensitive domains. An important research branch of XAI is to develop methods that help to facilitate a deeper understanding for the learned knowledge of artificial neural systems. In this book, a series of scientific studies are presented that shed light on how to adopt an empirical neuroscience inspired approach to investigate a neural network’s learned representation in the same spirit as neuroscientific studies of the brain.
Towards Ethical And Socially Responsible Explainable Ai
DOWNLOAD
Author : Mohammad Amir Khusru Akhtar
language : en
Publisher: Springer Nature
Release Date : 2024-08-30
Towards Ethical And Socially Responsible Explainable Ai written by Mohammad Amir Khusru Akhtar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-30 with Technology & Engineering categories.
"Dive deep into the evolving landscape of AI with 'Towards Ethical and Socially Responsible Explainable AI'. This transformative book explores the profound impact of AI on society, emphasizing transparency, accountability, and fairness in decision-making processes. It offers invaluable insights into creating AI systems that not only perform effectively but also uphold ethical standards and foster trust. Essential reading for technologists, policymakers, and all stakeholders invested in shaping a responsible AI future."
Representation Learning For Natural Language Processing
DOWNLOAD
Author : Zhiyuan Liu
language : en
Publisher: Springer Nature
Release Date : 2020-07-03
Representation Learning For Natural Language Processing written by Zhiyuan Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-03 with Computers categories.
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Interpretability In Deep Learning
DOWNLOAD
Author : Ayush Somani
language : en
Publisher: Springer Nature
Release Date : 2023-04-30
Interpretability In Deep Learning written by Ayush Somani and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-30 with Computers categories.
This book is a comprehensive curation, exposition and illustrative discussion of recent research tools for interpretability of deep learning models, with a focus on neural network architectures. In addition, it includes several case studies from application-oriented articles in the fields of computer vision, optics and machine learning related topic. The book can be used as a monograph on interpretability in deep learning covering the most recent topics as well as a textbook for graduate students. Scientists with research, development and application responsibilities benefit from its systematic exposition.
Computer Vision Eccv 2024
DOWNLOAD
Author : Aleš Leonardis
language : en
Publisher: Springer Nature
Release Date : 2024-09-29
Computer Vision Eccv 2024 written by Aleš Leonardis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-29 with Computers categories.
The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024. The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.
Interpretable Ai Techniques For Making Machine Learning Models Transparent
DOWNLOAD
Author : Dr. Aadam Quraishi MD
language : en
Publisher: Xoffencerpublication
Release Date : 2024-01-10
Interpretable Ai Techniques For Making Machine Learning Models Transparent written by Dr. Aadam Quraishi MD and has been published by Xoffencerpublication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-10 with Computers categories.
The capacity to understand and have trust in the results generated by models is one of the distinguishing characteristics of high-quality scientific research. Because of the significant impact that models and the outcomes of modeling will have on both our work and our personal lives, it is imperative that we have a solid understanding of models and have faith in the results of modeling. This is something that should be kept in mind by analysts, engineers, physicians, researchers, and scientists in general. Many years ago, picking a model that was transparent to human practitioners or customers often meant selecting basic data sources and simpler model forms such as linear models, single decision trees, or business rule systems. This was the case since selecting a model that was transparent required less processing power. This was the situation as a result of the fact that picking a model that was transparent to human practitioners or customers in general entailed picking a model. Even though these more easy approaches were typically the best option, and even though they continue to be the best option today, they are subject to failure in real-world circumstances in which the phenomena being replicated are nonlinear, uncommon or weak, or very distinctive to particular individuals. Despite the fact that they continue to be the best option, they are sensitive to failure in these kinds of scenarios. The conventional trade-off that existed between the precision of prediction models and the simplicity with which they could be interpreted has been abolished; nevertheless, it is likely that this trade-off was never truly required in the first place. There are technologies that are now accessible that can be used to develop modeling systems that are accurate and sophisticated, based on heterogeneous data and techniques for machine learning, and that can also aid human comprehension of and
Explainable Ai For Education Recent Trends And Challenges
DOWNLOAD
Author : Tanu Singh
language : en
Publisher: Springer Nature
Release Date : 2024-11-27
Explainable Ai For Education Recent Trends And Challenges written by Tanu Singh and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-27 with Computers categories.
“Explainable AI for Education: Recent Trends and Challenges” is a comprehensive exploration of the intersection between artificial intelligence (AI) and education. In this book, we delve into the critical need for transparency and interpretability in AI systems deployed within educational contexts. Key Themes Understanding AI in Education: We provide a concise overview of AI techniques commonly used in educational settings, including recommendation systems, personalized learning, and assessment tools. Readers will gain insights into the potential benefits and risks associated with AI adoption in education. The Black-Box Problem: AI models often operate as “black boxes,” making it challenging to understand their decision-making processes. We discuss the implications of this opacity and emphasize the importance of explainability. Explainable AI (XAI) Techniques: From rule-based approaches to neural network interpretability, we explore various methods for making AI models more transparent. Examples and case studies illustrate how XAI can enhance educational outcomes. Ethical Considerations: As AI becomes more integrated into education, ethical dilemmas arise. We address issues related to bias, fairness, and accountability, emphasizing responsible AI practices. Future Directions: Our book looks ahead, considering the evolving landscape of AI and its impact on education. We propose research directions and practical steps to promote XAI adoption in educational institutions.
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer Nature
Release Date : 2021-12-15
Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning written by Uday Kamath and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-15 with Computers categories.
This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group
Neuro Symbolic Artificial Intelligence The State Of The Art
DOWNLOAD
Author : P. Hitzler
language : en
Publisher: IOS Press
Release Date : 2022-01-19
Neuro Symbolic Artificial Intelligence The State Of The Art written by P. Hitzler and has been published by IOS Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-19 with Computers categories.
Neuro-symbolic AI is an emerging subfield of Artificial Intelligence that brings together two hitherto distinct approaches. ”Neuro” refers to the artificial neural networks prominent in machine learning, ”symbolic” refers to algorithmic processing on the level of meaningful symbols, prominent in knowledge representation. In the past, these two fields of AI have been largely separate, with very little crossover, but the so-called “third wave” of AI is now bringing them together. This book, Neuro-Symbolic Artificial Intelligence: The State of the Art, provides an overview of this development in AI. The two approaches differ significantly in terms of their strengths and weaknesses and, from a cognitive-science perspective, there is a question as to how a neural system can perform symbol manipulation, and how the representational differences between these two approaches can be bridged. The book presents 17 overview papers, all by authors who have made significant contributions in the past few years and starting with a historic overview first seen in 2016. With just seven months elapsed from invitation to authors to final copy, the book is as up-to-date as a published overview of this subject can be. Based on the editors’ own desire to understand the current state of the art, this book reflects the breadth and depth of the latest developments in neuro-symbolic AI, and will be of interest to students, researchers, and all those working in the field of Artificial Intelligence.