Bayesian Inference On Complicated Data

DOWNLOAD
Download Bayesian Inference On Complicated Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Inference On Complicated Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Inference On Complicated Data
DOWNLOAD
Author : Niansheng Tang
language : en
Publisher: BoD – Books on Demand
Release Date : 2020-07-15
Bayesian Inference On Complicated Data written by Niansheng Tang and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-15 with Mathematics categories.
Due to great applications in various fields, such as social science, biomedicine, genomics, and signal processing, and the improvement of computing ability, Bayesian inference has made substantial developments for analyzing complicated data. This book introduces key ideas of Bayesian sampling methods, Bayesian estimation, and selection of the prior. It is structured around topics on the impact of the choice of the prior on Bayesian statistics, some advances on Bayesian sampling methods, and Bayesian inference for complicated data including breast cancer data, cloud-based healthcare data, gene network data, and longitudinal data. This volume is designed for statisticians, engineers, doctors, and machine learning researchers.
Mixed Effects Models For Complex Data
DOWNLOAD
Author : Lang Wu
language : en
Publisher: CRC Press
Release Date : 2009-11-11
Mixed Effects Models For Complex Data written by Lang Wu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-11 with Mathematics categories.
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors,
S Co 2009 Sixth Conference Complex Data Modeling And Computationally Intensive Statistical Methods For Estimation And Prediction
DOWNLOAD
Author :
language : en
Publisher: Maggioli Editore
Release Date : 2009
S Co 2009 Sixth Conference Complex Data Modeling And Computationally Intensive Statistical Methods For Estimation And Prediction written by and has been published by Maggioli Editore this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Business & Economics categories.
Bayesian Data Analysis Second Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2003-07-29
Bayesian Data Analysis Second Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-07-29 with Mathematics categories.
Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include: Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collection Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
Statistical Methods For Reliability Data
DOWNLOAD
Author : William Q. Meeker
language : en
Publisher: John Wiley & Sons
Release Date : 2022-01-24
Statistical Methods For Reliability Data written by William Q. Meeker and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-24 with Technology & Engineering categories.
An authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book’s website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.
Bayesian Reasoning In Data Analysis
DOWNLOAD
Author : Giulio D'Agostini
language : en
Publisher: World Scientific
Release Date : 2003
Bayesian Reasoning In Data Analysis written by Giulio D'Agostini and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.
This book provides a multi-level introduction to Bayesian reasoning (as opposed to OC conventional statisticsOCO) and its applications to data analysis. The basic ideas of this OC newOCO approach to the quantification of uncertainty are presented using examples from research and everyday life. Applications covered include: parametric inference; combination of results; treatment of uncertainty due to systematic errors and background; comparison of hypotheses; unfolding of experimental distributions; upper/lower bounds in frontier-type measurements. Approximate methods for routine use are derived and are shown often to coincide OCo under well-defined assumptions! OCo with OC standardOCO methods, which can therefore be seen as special cases of the more general Bayesian methods. In dealing with uncertainty in measurements, modern metrological ideas are utilized, including the ISO classification of uncertainty into type A and type B. These are shown to fit well into the Bayesian framework.
Bayesian Inference For Probabilistic Risk Assessment
DOWNLOAD
Author : Dana Kelly
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-08-30
Bayesian Inference For Probabilistic Risk Assessment written by Dana Kelly and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-30 with Science categories.
Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis “building blocks” that can be modified, combined, or used as-is to solve a variety of challenging problems. The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking. Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.
Proceedings Of The 6th International Symposium On Uncertainty Quantification And Stochastic Modelling
DOWNLOAD
Author : José Eduardo Souza De Cursi
language : en
Publisher: Springer Nature
Release Date : 2023-10-21
Proceedings Of The 6th International Symposium On Uncertainty Quantification And Stochastic Modelling written by José Eduardo Souza De Cursi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-21 with Technology & Engineering categories.
This proceedings book covers a wide range of topics related to uncertainty analysis and its application in various fields of engineering and science. It explores uncertainties in numerical simulations for soil liquefaction potential, the toughness properties of construction materials, experimental tests on cyclic liquefaction potential, and the estimation of geotechnical engineering properties for aerogenerator foundation design. Additionally, the book delves into uncertainties in concrete compressive strength, bio-inspired shape optimization using isogeometric analysis, stochastic damping in rotordynamics, and the hygro-thermal properties of raw earth building materials. It also addresses dynamic analysis with uncertainties in structural parameters, reliability-based design optimization of steel frames, and calibration methods for models with dependent parameters. The book further explores mechanical property characterization in 3D printing, stochastic analysis in computational simulations, probability distribution in branching processes, data assimilation in ocean circulation modeling, uncertainty quantification in climate prediction, and applications of uncertainty quantification in decision problems and disaster management. This comprehensive collection provides insights into the challenges and solutions related to uncertainty in various scientific and engineering contexts.
Data Guided Healthcare Decision Making
DOWNLOAD
Author : Ramalingam Shanmugam
language : en
Publisher: Cambridge University Press
Release Date : 2023-06-22
Data Guided Healthcare Decision Making written by Ramalingam Shanmugam and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-22 with Medical categories.
How does data evidence matter in decision-making in healthcare? How do you implement and maintain cost effective healthcare operations? Do decision trees help to sharpen decision making? This book will answer these questions, demystifying the many questions by clearly showing how to analyse data and how to interpret the results – vital skills for anyone who will go on to work in health administration in hospitals, clinics, pharmaceutical or insurance industries. Written by an expert in health and medical informatics, this book introduces readers to the fundamentals of operational decision making by illustrating the ideas and tools to reach optimal healthcare, drawing on numerous healthcare data sets from multiple sources. Aimed at an audience of graduate students and lecturers in Healthcare Administration and Business Administration courses and heavily illustrated throughout, this book includes up-to-date concepts, new methodologies and interpretations using widely available software: Excel, Microsoft Mathematics, MathSolver and JASP.
Computational Methods In Biomedical Research
DOWNLOAD
Author : Ravindra Khattree
language : en
Publisher: CRC Press
Release Date : 2007-12-12
Computational Methods In Biomedical Research written by Ravindra Khattree and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-12 with Mathematics categories.
Continuing advances in biomedical research and statistical methods call for a constant stream of updated, cohesive accounts of new developments so that the methodologies can be properly implemented in the biomedical field. Responding to this need, Computational Methods in Biomedical Research explores important current and emerging computational statistical methods that are used in biomedical research. Written by active researchers in the field, this authoritative collection covers a wide range of topics. It introduces each topic at a basic level, before moving on to more advanced discussions of applications. The book begins with microarray data analysis, machine learning techniques, and mass spectrometry-based protein profiling. It then uses state space models to predict US cancer mortality rates and provides an overview of the application of multistate models in analyzing multiple failure times. The book also describes various Bayesian techniques, the sequential monitoring of randomization tests, mixed-effects models, and the classification rules for repeated measures data. The volume concludes with estimation methods for analyzing longitudinal data. Supplying the knowledge necessary to perform sophisticated statistical analyses, this reference is a must-have for anyone involved in advanced biomedical and pharmaceutical research. It will help in the quest to identify potential new drugs for the treatment of a variety of diseases.