Big Data Machine Learning And Data Mining Explained

DOWNLOAD
Download Big Data Machine Learning And Data Mining Explained PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Big Data Machine Learning And Data Mining Explained book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges
DOWNLOAD
Author : Aboul Ella Hassanien
language : en
Publisher: Springer Nature
Release Date : 2020-12-14
Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges written by Aboul Ella Hassanien and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-14 with Computers categories.
This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.
Data Mining Approaches For Big Data And Sentiment Analysis In Social Media
DOWNLOAD
Author : Brij Gupta
language : en
Publisher:
Release Date : 2021
Data Mining Approaches For Big Data And Sentiment Analysis In Social Media written by Brij Gupta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Big data categories.
"This book explores the key concepts of data mining and utilizing them on online social media platforms, offering valuable insight into data mining approaches for big data and sentiment analysis in online social media and covering many important security and other aspects and current trends"--
Statistical And Machine Learning Data Mining
DOWNLOAD
Author : Bruce Ratner
language : en
Publisher: CRC Press
Release Date : 2012-02-28
Statistical And Machine Learning Data Mining written by Bruce Ratner and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-28 with Business & Economics categories.
The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.
Big Data Machine Learning And Data Mining Explained
DOWNLOAD
Author : Chitrali Kaul
language : en
Publisher: Educohack Press
Release Date : 2025-02-28
Big Data Machine Learning And Data Mining Explained written by Chitrali Kaul and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-28 with Computers categories.
Big Data, Machine Learning, and Data Mining Explained is an essential guide for understanding the world of big data, data mining, and machine learning. This book is perfect for students, professionals, and anyone eager to learn about these rapidly evolving technologies and their profound impact on our world. We provide comprehensive explanations of big data, data mining, and machine learning, making complex algorithms and models easy to understand. This book covers all key terms and processes, offering insights into how these technologies are transforming industries and markets. You'll also gain a glimpse into the future and understand the career opportunities in these fields. We delve into how big data is revolutionizing business practices, enhancing growth, and improving customer reach. Data mining techniques are explained in detail, showcasing how they help in decision-making and predicting trends. Furthermore, we explore machine learning, a branch of artificial intelligence, highlighting its role in processing data through advanced models and algorithms. Designed to be accessible and informative, Big Data, Machine Learning, and Data Mining Explained will help you navigate and thrive in this world of emerging technologies.
Encyclopedia Of Machine Learning
DOWNLOAD
Author : Claude Sammut
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-03-28
Encyclopedia Of Machine Learning written by Claude Sammut and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-28 with Computers categories.
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Machine Learning And Big Data
DOWNLOAD
Author : Uma N. Dulhare
language : en
Publisher: John Wiley & Sons
Release Date : 2020-09-01
Machine Learning And Big Data written by Uma N. Dulhare and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-01 with Computers categories.
This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.
Encyclopedia Of Data Science And Machine Learning
DOWNLOAD
Author : Wang, John
language : en
Publisher: IGI Global
Release Date : 2023-01-20
Encyclopedia Of Data Science And Machine Learning written by Wang, John and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-20 with Computers categories.
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Data Science
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2018-04-13
Data Science written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-13 with Computers categories.
A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
Hands On Data Science And Python Machine Learning
DOWNLOAD
Author : Frank Kane
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-31
Hands On Data Science And Python Machine Learning written by Frank Kane and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-31 with Computers categories.
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
Mathematical Analysis For Machine Learning And Data Mining
DOWNLOAD
Author : Dan A Simovici
language : en
Publisher: World Scientific
Release Date : 2018-05-22
Mathematical Analysis For Machine Learning And Data Mining written by Dan A Simovici and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-22 with Computers categories.
This compendium provides a self-contained introduction to mathematical analysis in the field of machine learning and data mining. The mathematical analysis component of the typical mathematical curriculum for computer science students omits these very important ideas and techniques which are indispensable for approaching specialized area of machine learning centered around optimization such as support vector machines, neural networks, various types of regression, feature selection, and clustering. The book is of special interest to researchers and graduate students who will benefit from these application areas discussed in the book. Related Link(s)