Computing In Algebraic Geometry

DOWNLOAD
Download Computing In Algebraic Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computing In Algebraic Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Computing In Algebraic Geometry
DOWNLOAD
Author : Wolfram Decker
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-01
Computing In Algebraic Geometry written by Wolfram Decker and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-01 with Mathematics categories.
This book provides a quick access to computational tools for algebraic geometry, the mathematical discipline which handles solution sets of polynomial equations. Originating from a number of intense one week schools taught by the authors, the text is designed so as to provide a step by step introduction which enables the reader to get started with his own computational experiments right away. The authors present the basic concepts and ideas in a compact way.
Computational Algebraic Geometry
DOWNLOAD
Author : Hal Schenck
language : en
Publisher: Cambridge University Press
Release Date : 2003-10-06
Computational Algebraic Geometry written by Hal Schenck and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-10-06 with Computers categories.
The interplay between algebra and geometry is a beautiful (and fun!) area of mathematical investigation. Advances in computing and algorithms make it possible to tackle many classical problems in a down-to-earth and concrete fashion. This opens wonderful new vistas and allows us to pose, study and solve problems that were previously out of reach. Suitable for graduate students, the objective of this 2003 book is to bring advanced algebra to life with lots of examples. The first chapters provide an introduction to commutative algebra and connections to geometry. The rest of the book focuses on three active areas of contemporary algebra: Homological Algebra (the snake lemma, long exact sequence inhomology, functors and derived functors (Tor and Ext), and double complexes); Algebraic Combinatorics and Algebraic Topology (simplicial complexes and simplicial homology, Stanley-Reisner rings, upper bound theorem and polytopes); and Algebraic Geometry (points and curves in projective space, Riemann-Roch, Cech cohomology, regularity).
A First Course In Computational Algebraic Geometry
DOWNLOAD
Author : Wolfram Decker
language : en
Publisher: Cambridge University Press
Release Date : 2013-02-07
A First Course In Computational Algebraic Geometry written by Wolfram Decker and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-07 with Computers categories.
A quick guide to computing in algebraic geometry with many explicit computational examples introducing the computer algebra system Singular.
Ideals Varieties And Algorithms
DOWNLOAD
Author : David Cox
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Ideals Varieties And Algorithms written by David Cox and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra. Until recently, these topics involved a lot of abstract mathematics and were only taught in graduate school. But in the 1960's, Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations. Fueled by the development of computers fast enough to run these algorithms, the last two decades have seen a minor revolution in commutative algebra. The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand, and has changed the practice of much research in algebraic geometry. This has also enhanced the importance of the subject for computer scientists and engineers, who have begun to use these techniques in a whole range of problems. It is our belief that the growing importance of these computational techniques warrants their introduction into the undergraduate (and graduate) mathematics curricu lum. Many undergraduates enjoy the concrete, almost nineteenth century, flavor that a computational emphasis brings to the subject. At the same time, one can do some substantial mathematics, including the Hilbert Basis Theorem, Elimination Theory and the Nullstellensatz. The mathematical prerequisites of the book are modest: the students should have had a course in linear algebra and a course where they learned how to do proofs. Examples of the latter sort of course include discrete math and abstract algebra.
Geometric Algebra For Computer Science
DOWNLOAD
Author : Leo Dorst
language : en
Publisher: Elsevier
Release Date : 2010-07-26
Geometric Algebra For Computer Science written by Leo Dorst and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-26 with Computers categories.
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing* Written by leaders in the field providing essential information on this new technique for 3D graphics* This full colour book includes a website with GAViewer, a program to experiment with GA
Foundations Of Geometric Algebra Computing
DOWNLOAD
Author : Dietmar Hildenbrand
language : en
Publisher: Springer
Release Date : 2015-01-29
Foundations Of Geometric Algebra Computing written by Dietmar Hildenbrand and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-29 with Computers categories.
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.
Computing In Euclidean Geometry 2nd Edition
DOWNLOAD
Author : Ding-zhu Du
language : en
Publisher: World Scientific
Release Date : 1995-01-25
Computing In Euclidean Geometry 2nd Edition written by Ding-zhu Du and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-01-25 with Computers categories.
This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. Topics covered include the history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra, triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and Steiner trees. This second edition contains three new surveys covering geometric constraint solving, computational geometry and the exact computation paradigm.
Algorithms In Real Algebraic Geometry
DOWNLOAD
Author : Saugata Basu
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-21
Algorithms In Real Algebraic Geometry written by Saugata Basu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-21 with Mathematics categories.
The algorithmic problems of real algebraic geometry such as real root counting, deciding the existence of solutions of systems of polynomial equations and inequalities, finding global maxima or deciding whether two points belong in the same connected component of a semi-algebraic set appear frequently in many areas of science and engineering. In this textbook the main ideas and techniques presented form a coherent and rich body of knowledge. Mathematicians will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. Being self-contained the book is accessible to graduate students and even, for invaluable parts of it, to undergraduate students. This second edition contains several recent results, on discriminants of symmetric matrices, real root isolation, global optimization, quantitative results on semi-algebraic sets and the first single exponential algorithm computing their first Betti number.
Polyhedral And Algebraic Methods In Computational Geometry
DOWNLOAD
Author : Michael Joswig
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-01-04
Polyhedral And Algebraic Methods In Computational Geometry written by Michael Joswig and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-04 with Mathematics categories.
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
Geometric Computing With Clifford Algebras
DOWNLOAD
Author : Gerald Sommer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Geometric Computing With Clifford Algebras written by Gerald Sommer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Computers categories.
Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism.