[PDF] Euv Pattern Defect Detection Sensitivity Based On Aerial Image Linewidth Measurements - eBooks Review

Euv Pattern Defect Detection Sensitivity Based On Aerial Image Linewidth Measurements


Euv Pattern Defect Detection Sensitivity Based On Aerial Image Linewidth Measurements
DOWNLOAD

Download Euv Pattern Defect Detection Sensitivity Based On Aerial Image Linewidth Measurements PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Euv Pattern Defect Detection Sensitivity Based On Aerial Image Linewidth Measurements book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Euv Pattern Defect Detection Sensitivity Based On Aerial Image Linewidth Measurements


Euv Pattern Defect Detection Sensitivity Based On Aerial Image Linewidth Measurements
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2010

Euv Pattern Defect Detection Sensitivity Based On Aerial Image Linewidth Measurements written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with categories.


As the quality of EUV-wavelength mask inspection microscopes improves over time, the image properties and intensity profiles of reflected light can be evaluated in ever-greater detail. The SEMATECH Berkeley Actinic Inspection Tool (AIT) is one such microscope, featuring mask resolution values that match or exceed those available through lithographic printing in current photoresists. In order to evaluate the defect detection sensitivity of the AIT for dense line patterns on typical masks, the authors study the line width roughness (LWR) on two masks, as measured in the EUV images. They report the through-focus and pitch dependence of contrast, image log slope, linewidth, and LWR. The AIT currently reaches LWR 3[sigma] values close to 9 nm for 175 nm half-pitch lines. This value is below 10% linewidth for nearly all lines routinely measured in the AIT. Evidence suggests that this lower level may arise from the mask's inherent pattern roughness. While the sensitivity limit of the AlT has not yet been established, it is clear that the AIT has the required sensitivity to detect defects that cause 10% linewidth changes in line sizes of 125 nm and larger.



Emlc 2005


Emlc 2005
DOWNLOAD
Author : Uwe Behringer
language : en
Publisher: Margret Schneider
Release Date : 2005

Emlc 2005 written by Uwe Behringer and has been published by Margret Schneider this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with categories.




Photomask And Next Generation Lithography Mask Technology Xi


Photomask And Next Generation Lithography Mask Technology Xi
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2004

Photomask And Next Generation Lithography Mask Technology Xi written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Integrated circuits categories.




Science Abstracts


Science Abstracts
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1995

Science Abstracts written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Electrical engineering categories.




International Aerospace Abstracts


International Aerospace Abstracts
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1992

International Aerospace Abstracts written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with Aeronautics categories.




Key Challenges In Euv Mask Technology


Key Challenges In Euv Mask Technology
DOWNLOAD
Author : Yow-Gwo Wang
language : en
Publisher:
Release Date : 2005

Key Challenges In Euv Mask Technology written by Yow-Gwo Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with categories.


This dissertation focuses on issues related to extreme ultraviolet (EUV) lithography mask technology: mask inspection and mask 3D effects on imaging performance. Actinic (at- wavelength) mask inspection (both blank and patterned mask) is of critical concern for EUV lithography. In this dissertation, systematic studies exploring the optimal optical system design to improve the defect detection sensitivity for both actinic mask blank and patterned mask inspection tools using EUV light are presented. For EUV mask blank in- spection, a complete discussion is conducted to compare the conventional bright field method and the Zernike phase contrast method on their phase defect detection sensitivity by thin mask simulations and experiments using the SHARP EUV microscope at Lawrence Berke- ley National Laboratory (LBNL). The study shows that higher defect detection sensitivity and in-focus inspection capability can be achieved by the Zernike phase contrast method, while the conventional bright field method needs through-focus scanning and results in lower defect detection sensitivity. Experimental results show that a programmed defect as small as 0.35 nm in height is detected at best focus with a signal-to-noise ratio (SNR) ≈ 8 by the Zernike phase contrast method. With the considerations of various noise sources and system design, the thin mask simulation results show that the dark field method has better detection efficiency in inspection mode, while the Zernike phase contrast method is better in review mode (pixel size ≤ 25 nm). Further, the impact of pixel size, EUV source type, and photon collection efficiency for a dark field based actinic blank inspection tool is discussed by thin mask simulation. The simulation results show the complex correlation between each parameter on defect inspection efficiency and also show that 10-watt EUV source power and 100 nm pixel size are needed to capture a phase defect of height 0.5 nm. For EUV patterned mask inspection, the possibility of using the optimum phase shift in the pupil plane to improve inspection efficiency is discussed using a thin mask model. Then the nature of the EUV mask pattern defect is analyzed by its near field distribution using a thick mask model. The simulation results indicate that, as a result of 3D effects leading to phase artifacts, pattern defects cannot be simply treated as ideal absorber defects. The results can affect the choice of optimal patterned mask inspection tool design. Moreover, a study of a bright field based EUV actinic pattern inspection tool design using a hybrid (2D + 3D) model is presented, showing that the impact of noise sources and optical design on critical pattern defects detection sensitivity. The study shows that introducing a − 50 nm defocus into the inspection system can improve the SNR by 50%. The impact of EUV sub-resolution assist feature (SRAF) on mitigation of mask 3D effects is discussed by rigorous 3D modeling. The simulation results show that introducing SRAFs in the mask design induces even stronger effective single pole aberration into the imaging system to balance the Bossung curve. Asymmetric SRAFs pattern placement can achieve a 21% improvement of the process window. Moreover, the complex interaction between the main feature and the SRAFs is analyzed by systematic position sensitivity studies. Bossung tilt sensitivity with respect to the relative positions between main feature and SRAFs is shown, which indicates that different location precision requirements are needed for SRAFs during the mask-making process.



Quantitative Evaluation Of Mask Phase Defects From Through Focus Euv Aerial Images


Quantitative Evaluation Of Mask Phase Defects From Through Focus Euv Aerial Images
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2011

Quantitative Evaluation Of Mask Phase Defects From Through Focus Euv Aerial Images written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.


Mask defects inspection and imaging is one of the most important issues for any pattern transfer lithography technology. This is especially true for EUV lithography where the wavelength-specific properties of masks and defects necessitate actinic inspection for a faithful prediction of defect printability and repair performance. In this paper we will present a technique to obtain a quantitative characterization of mask phase defects from EUV aerial images. We apply this technique to measure the aerial image phase of native defects on a blank mask, measured with the SEMATECH Berkeley Actinic Inspection Tool (AIT) an EUV zoneplate microscope that operates at Lawrence Berkeley National Laboratory. The measured phase is compared with predictions made from AFM top-surface measurements of those defects. While amplitude defects are usually easy to recognize and quantify with standard inspection techniques like scanning electron microscopy (SEM), defects or structures that have a phase component can be much more challenging to inspect. A phase defect can originate from the substrate or from any level of the multilayer. In both cases its effect on the reflected field is not directly related to the local topography of the mask surface, but depends on the deformation of the multilayer structure. Using the AIT, we have previously showed that EUV inspection provides a faithful and reliable way to predict the appearance of mask defect on the printed wafer; but to obtain a complete characterization of the defect we need to evaluate quantitatively its phase component. While aerial imaging doesn't provide a direct measurement of the phase of the object, this information is encoded in the through focus evolution of the image intensity distribution. Recently we developed a technique that allows us to extract the complex amplitude of EUV mask defects using two aerial images from different focal planes. The method for the phase reconstruction is derived from the Gerchberg-Saxton (GS) algorithm, an iterative method that can be used to reconstruct phase and amplitude of an object from the intensity distributions in the image and in the pupil plane. The GS algorithm is equivalent to a two-parameter optimization problem and it needs exactly two constraints to be solved, namely two intensity distributions in different focal planes. In some formulations, adding any other constraint would result in an ill posed problem. On the other hand, the solution's stability and convergence time can both be improved using more information. We modified our complex amplitude reconstruction algorithm to use an arbitrary number of through focus images and we compared its performance with the previous version in terms of convergence speed, robustness and accuracy. We have demonstrated the phase-reconstruction method on native, mask-blank phase defects and compared the results with phase-predictions made from AFM data collected before and after the multilayer deposition. The method and the current results could be extremely useful for improving the modeling and understanding of native phase defects, their detectability, and their printability.



Aerial Image Microscopes For The Inspection Of Defects In Euv Masks


Aerial Image Microscopes For The Inspection Of Defects In Euv Masks
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2002

Aerial Image Microscopes For The Inspection Of Defects In Euv Masks written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with categories.


The high volume inspection equipment currently available to support development of EUV blanks is non-actinic. The same is anticipated for patterned EUV mask inspection. Once potential defects are identified and located by such non-actinic inspection techniques, it is essential to have instrumentation to perform detailed characterization, and if repairs are performed, re-evaluation. The ultimate metric for the acceptance or rejection of a mask due to a defect, is the wafer level impact. Thus measuring the aerial image for the site under question is required. An EUV Aerial Image Microscope (''AIM'') similar to the current AIM tools for 248nm and 193nm exposure wavelength is the natural solution for this task. Due to the complicated manufacturing process of EUV blanks, AIM measurements might also be beneficial to accurately assessing the severity of a blank defect. This is an additional application for an EUV AIM as compared to today's use In recognition of the critical role of an EUV AIM for the successful implementation of EUV blank and mask supply, International SEMATECH initiated this design study with the purpose to define the technical requirements for accurately simulating EUV scanner performance, demonstrating the feasibility to meet these requirements and to explore various technical approaches to building an EUV AIM tool.



Actinic Inspection Of Euv Programmed Multilayer Defects And Cross Comparison Measurements


Actinic Inspection Of Euv Programmed Multilayer Defects And Cross Comparison Measurements
DOWNLOAD
Author : J. S. Taylor
language : en
Publisher:
Release Date : 2006

Actinic Inspection Of Euv Programmed Multilayer Defects And Cross Comparison Measurements written by J. S. Taylor and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with categories.


The production of defect-free mask blanks remains a key challenge for extreme ultraviolet (EUV) lithography. Integral to this effort is the development and characterization of mask inspection tools that are sensitive enough to detect critical defects with high confidence. Using a single programmed-defect mask with a range of buried bump-type defects, we report a comparison of measurements made in four different mask-inspection tools: one commercial tool using 488-nm wavelength illumination, one prototype tool that uses 266-nm illumination, and two non-commercial EUV ''actinic'' inspection tools. The EUV tools include a darkfield imaging microscope and a scanning microscope. Our measurements show improving sensitivity with the shorter wavelength non-EUV tool, down to 33-nm spherical-equivalent-volume diameter, for defects of this type. Measurements conditions were unique to each tool, with the EUV tools operating at a much slower inspection rate. Several defects observed with EUV inspection were below the detection threshold of the non-EUV tools.



Improving The Performance Of The Actinic Inspection Tool With An Optimized Alignment Procedure


Improving The Performance Of The Actinic Inspection Tool With An Optimized Alignment Procedure
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2009

Improving The Performance Of The Actinic Inspection Tool With An Optimized Alignment Procedure written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.


Extreme ultraviolet (EUV) microscopy is an important tool for the investigation of the performance of EUV masks, for detecting the presence and the characteristics of defects, and for evaluating the effectiveness of defect repair techniques. Aerial image measurement bypasses the difficulties inherent to photoresist imaging and enables high data collection speed and flexibility. It provides reliable and quick feedback for the development of masks and lithography system modeling methods. We operate the SEMATECH Berkeley Actinic Inspection Tool (AIT), a EUV microscope installed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The AIT is equipped with several high-magnification Fresnel zoneplate lenses, with various numerical aperture values, that enable it image the reflective mask surface with various resolution and magnification settings. Although the AIT has undergone significant recent improvements in terms of imaging resolution and illumination uniformity, there is still room for improvement. In the AIT, an off-axis zoneplate lens collects the light coming from the sample and an image of the sample is projected onto an EUV-sensitive CCD camera. The simplicity of the optical system is particularly helpful considering that the AIT alignment has to be performed every time that a sample or a zoneplate is replaced. The alignment is sensitive to several parameters such as the lens position and orientation, the illumination direction and the sample characteristics. Since the AIT works in high vacuum, there is no direct access to the optics or to the sample during the alignment and the measurements. For all these reasons the alignment procedures and feedback can be complex, and in some cases can reduce the overall data throughput of the system. In this paper we review the main strategies and procedures that have been developed for quick and reliable alignments, and we describe the performance improvements we have achieved, in terms of aberration magnitude reduction.