[PDF] First Order Mathematical Logic - eBooks Review

First Order Mathematical Logic


First Order Mathematical Logic
DOWNLOAD

Download First Order Mathematical Logic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get First Order Mathematical Logic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



First Order Mathematical Logic


First Order Mathematical Logic
DOWNLOAD
Author : Angelo Margaris
language : en
Publisher: Courier Corporation
Release Date : 1990-01-01

First Order Mathematical Logic written by Angelo Margaris and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990-01-01 with Mathematics categories.


"Attractive and well-written introduction." — Journal of Symbolic Logic The logic that mathematicians use to prove their theorems is itself a part of mathematics, in the same way that algebra, analysis, and geometry are parts of mathematics. This attractive and well-written introduction to mathematical logic is aimed primarily at undergraduates with some background in college-level mathematics; however, little or no acquaintance with abstract mathematics is needed. Divided into three chapters, the book begins with a brief encounter of naïve set theory and logic for the beginner, and proceeds to set forth in elementary and intuitive form the themes developed formally and in detail later. In Chapter Two, the predicate calculus is developed as a formal axiomatic theory. The statement calculus, presented as a part of the predicate calculus, is treated in detail from the axiom schemes through the deduction theorem to the completeness theorem. Then the full predicate calculus is taken up again, and a smooth-running technique for proving theorem schemes is developed and exploited. Chapter Three is devoted to first-order theories, i.e., mathematical theories for which the predicate calculus serves as a base. Axioms and short developments are given for number theory and a few algebraic theories. Then the metamathematical notions of consistency, completeness, independence, categoricity, and decidability are discussed, The predicate calculus is proved to be complete. The book concludes with an outline of Godel's incompleteness theorem. Ideal for a one-semester course, this concise text offers more detail and mathematically relevant examples than those available in elementary books on logic. Carefully chosen exercises, with selected answers, help students test their grasp of the material. For any student of mathematics, logic, or the interrelationship of the two, this book represents a thought-provoking introduction to the logical underpinnings of mathematical theory. "An excellent text." — Mathematical Reviews



Mathematical Logic


Mathematical Logic
DOWNLOAD
Author : H.-D. Ebbinghaus
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-11-15

Mathematical Logic written by H.-D. Ebbinghaus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-11-15 with Mathematics categories.


This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.



First Order Logic


First Order Logic
DOWNLOAD
Author : Raymond R. Smullyan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

First Order Logic written by Raymond R. Smullyan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in "analytic" or "cut-free" methods. We use the term "analytic" to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as "analysing" the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term "Boolean valuation" to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier).



Extensions Of First Order Logic


Extensions Of First Order Logic
DOWNLOAD
Author : Maria Manzano
language : en
Publisher: Cambridge University Press
Release Date : 1996-03-29

Extensions Of First Order Logic written by Maria Manzano and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-03-29 with Computers categories.


An introduction to many-sorted logic as an extension of first-order logic.



An Introduction To Mathematical Logic


An Introduction To Mathematical Logic
DOWNLOAD
Author : Richard E. Hodel
language : en
Publisher: Courier Corporation
Release Date : 2013-01-01

An Introduction To Mathematical Logic written by Richard E. Hodel and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-01 with Mathematics categories.


This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.



The Foundations Of Mathematics


The Foundations Of Mathematics
DOWNLOAD
Author : Kenneth Kunen
language : en
Publisher:
Release Date : 2009

The Foundations Of Mathematics written by Kenneth Kunen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.



Introduction To Mathematical Logic


Introduction To Mathematical Logic
DOWNLOAD
Author : Elliot Mendelsohn
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Introduction To Mathematical Logic written by Elliot Mendelsohn and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Social Science categories.


This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.



A Beginner S Guide To Mathematical Logic


A Beginner S Guide To Mathematical Logic
DOWNLOAD
Author : Raymond M. Smullyan
language : en
Publisher: Courier Corporation
Release Date : 2014-07-23

A Beginner S Guide To Mathematical Logic written by Raymond M. Smullyan and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-23 with Mathematics categories.


Written by a creative master of mathematical logic, this introductory text combines stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic. Author Raymond Smullyan offers clear, incremental presentations of difficult logic concepts. He highlights each subject with inventive explanations and unique problems. Smullyan's accessible narrative provides memorable examples of concepts related to proofs, propositional logic and first-order logic, incompleteness theorems, and incompleteness proofs. Additional topics include undecidability, combinatoric logic, and recursion theory. Suitable for undergraduate and graduate courses, this book will also amuse and enlighten mathematically minded readers. Dover (2014) original publication. See every Dover book in print at www.doverpublications.com



First Course In Mathematical Logic


First Course In Mathematical Logic
DOWNLOAD
Author : Patrick Suppes
language : en
Publisher: Courier Corporation
Release Date : 2012-04-30

First Course In Mathematical Logic written by Patrick Suppes and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-30 with Mathematics categories.


Rigorous introduction is simple enough in presentation and context for wide range of students. Symbolizing sentences; logical inference; truth and validity; truth tables; terms, predicates, universal quantifiers; universal specification and laws of identity; more.