[PDF] Foundations Of Time Series Analysis And Prediction Theory - eBooks Review

Foundations Of Time Series Analysis And Prediction Theory


Foundations Of Time Series Analysis And Prediction Theory
DOWNLOAD

Download Foundations Of Time Series Analysis And Prediction Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations Of Time Series Analysis And Prediction Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Foundations Of Time Series Analysis And Prediction Theory


Foundations Of Time Series Analysis And Prediction Theory
DOWNLOAD
Author : Mohsen Pourahmadi
language : en
Publisher: John Wiley & Sons
Release Date : 2001-06-01

Foundations Of Time Series Analysis And Prediction Theory written by Mohsen Pourahmadi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-01 with Mathematics categories.


Foundations of time series for researchers and students This volume provides a mathematical foundation for time seriesanalysis and prediction theory using the idea of regression and thegeometry of Hilbert spaces. It presents an overview of the tools oftime series data analysis, a detailed structural analysis ofstationary processes through various reparameterizations employingtechniques from prediction theory, digital signal processing, andlinear algebra. The author emphasizes the foundation and structureof time series and backs up this coverage with theory andapplication. End-of-chapter exercises provide reinforcement for self-study andappendices covering multivariate distributions and Bayesianforecasting add useful reference material. Further coveragefeatures: * Similarities between time series analysis and longitudinal dataanalysis * Parsimonious modeling of covariance matrices through ARMA-likemodels * Fundamental roles of the Wold decomposition andorthogonalization * Applications in digital signal processing and Kalmanfiltering * Review of functional and harmonic analysis and predictiontheory Foundations of Time Series Analysis and Prediction Theory guidesreaders from the very applied principles of time series analysisthrough the most theoretical underpinnings of prediction theory. Itprovides a firm foundation for a widely applicable subject forstudents, researchers, and professionals in diverse scientificfields.



Theory And Applications Of Time Series Analysis


Theory And Applications Of Time Series Analysis
DOWNLOAD
Author : Olga Valenzuela
language : en
Publisher: Springer Nature
Release Date : 2020-11-20

Theory And Applications Of Time Series Analysis written by Olga Valenzuela and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-20 with Business & Economics categories.


This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.



Time Series Analysis Methods And Applications


Time Series Analysis Methods And Applications
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2012-05-18

Time Series Analysis Methods And Applications written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-18 with Mathematics categories.


The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas



Foundations Of Time Series Analysis And Prediction Theory


Foundations Of Time Series Analysis And Prediction Theory
DOWNLOAD
Author : Pourahmadi
language : en
Publisher:
Release Date : 2002-11-01

Foundations Of Time Series Analysis And Prediction Theory written by Pourahmadi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-11-01 with categories.




Univariate Discrete Distributions


Univariate Discrete Distributions
DOWNLOAD
Author : Norman L. Johnson
language : en
Publisher: John Wiley & Sons
Release Date : 2005-08-30

Univariate Discrete Distributions written by Norman L. Johnson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-08-30 with Mathematics categories.


This Set Contains: Continuous Multivariate Distributions, Volume 1, Models and Applications, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 1, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 2, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discrete Multivariate Distributions by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Univariate Discrete Distributions, 3rd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discover the latest advances in discrete distributions theory The Third Edition of the critically acclaimed Univariate Discrete Distributions provides a self-contained, systematic treatment of the theory, derivation, and application of probability distributions for count data. Generalized zeta-function and q-series distributions have been added and are covered in detail. New families of distributions, including Lagrangian-type distributions, are integrated into this thoroughly revised and updated text. Additional applications of univariate discrete distributions are explored to demonstrate the flexibility of this powerful method. A thorough survey of recent statistical literature draws attention to many new distributions and results for the classical distributions. Approximately 450 new references along with several new sections are introduced to reflect the current literature and knowledge of discrete distributions. Beginning with mathematical, probability, and statistical fundamentals, the authors provide clear coverage of the key topics in the field, including: Families of discrete distributions Binomial distribution Poisson distribution Negative binomial distribution Hypergeometric distributions Logarithmic and Lagrangian distributions Mixture distributions Stopped-sum distributions Matching, occupancy, runs, and q-series distributions Parametric regression models and miscellanea Emphasis continues to be placed on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions. New derivations of discrete distributions via stochastic processes and random walks are introduced without unnecessarily complex discussions of stochastic processes. Throughout the Third Edition, extensive information has been added to reflect the new role of computer-based applications. With its thorough coverage and balanced presentation of theory and application, this is an excellent and essential reference for statisticians and mathematicians.



Applied Bayesian Modeling And Causal Inference From Incomplete Data Perspectives


Applied Bayesian Modeling And Causal Inference From Incomplete Data Perspectives
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: John Wiley & Sons
Release Date : 2004-10-22

Applied Bayesian Modeling And Causal Inference From Incomplete Data Perspectives written by Andrew Gelman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-10-22 with Mathematics categories.


This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.



Modern Applied U Statistics


Modern Applied U Statistics
DOWNLOAD
Author : Jeanne Kowalski
language : en
Publisher: John Wiley & Sons
Release Date : 2008-01-28

Modern Applied U Statistics written by Jeanne Kowalski and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-28 with Mathematics categories.


A timely and applied approach to the newly discovered methods and applications of U-statistics Built on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utilizing a "learn by example" approach, this book provides an accessible, yet in-depth, treatment of U-statistics, as well as addresses key concepts in asymptotic theory by integrating translational and cross-disciplinary research. The authors begin with an introduction of the essential and theoretical foundations of U-statistics such as the notion of convergence in probability and distribution, basic convergence results, stochastic Os, inference theory, generalized estimating equations, as well as the definition and asymptotic properties of U-statistics. With an emphasis on nonparametric applications when and where applicable, the authors then build upon this established foundation in order to equip readers with the knowledge needed to understand the modern-day extensions of U-statistics that are explored in subsequent chapters. Additional topical coverage includes: Longitudinal data modeling with missing data Parametric and distribution-free mixed-effect and structural equation models A new multi-response based regression framework for non-parametric statistics such as the product moment correlation, Kendall's tau, and Mann-Whitney-Wilcoxon rank tests A new class of U-statistic-based estimating equations (UBEE) for dependent responses Motivating examples, in-depth illustrations of statistical and model-building concepts, and an extensive discussion of longitudinal study designs strengthen the real-world utility and comprehension of this book. An accompanying Web site features SAS? and S-Plus? program codes, software applications, and additional study data. Modern Applied U-Statistics accommodates second- and third-year students of biostatistics at the graduate level and also serves as an excellent self-study for practitioners in the fields of bioinformatics and psychosocial research.



Modes Of Parametric Statistical Inference


Modes Of Parametric Statistical Inference
DOWNLOAD
Author : Seymour Geisser
language : en
Publisher: John Wiley & Sons
Release Date : 2006-01-27

Modes Of Parametric Statistical Inference written by Seymour Geisser and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-27 with Mathematics categories.


A fascinating investigation into the foundations of statistical inference This publication examines the distinct philosophical foundations of different statistical modes of parametric inference. Unlike many other texts that focus on methodology and applications, this book focuses on a rather unique combination of theoretical and foundational aspects that underlie the field of statistical inference. Readers gain a deeper understanding of the evolution and underlying logic of each mode as well as each mode's strengths and weaknesses. The book begins with fascinating highlights from the history of statistical inference. Readers are given historical examples of statistical reasoning used to address practical problems that arose throughout the centuries. Next, the book goes on to scrutinize four major modes of statistical inference: * Frequentist * Likelihood * Fiducial * Bayesian The author provides readers with specific examples and counterexamples of situations and datasets where the modes yield both similar and dissimilar results, including a violation of the likelihood principle in which Bayesian and likelihood methods differ from frequentist methods. Each example is followed by a detailed discussion of why the results may have varied from one mode to another, helping the reader to gain a greater understanding of each mode and how it works. Moreover, the author provides considerable mathematical detail on certain points to highlight key aspects of theoretical development. The author's writing style and use of examples make the text clear and engaging. This book is fundamental reading for graduate-level students in statistics as well as anyone with an interest in the foundations of statistics and the principles underlying statistical inference, including students in mathematics and the philosophy of science. Readers with a background in theoretical statistics will find the text both accessible and absorbing.



Bayesian Models For Categorical Data


Bayesian Models For Categorical Data
DOWNLOAD
Author : Peter Congdon
language : en
Publisher: John Wiley & Sons
Release Date : 2005-12-13

Bayesian Models For Categorical Data written by Peter Congdon and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-13 with Mathematics categories.


The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.



Modelling Under Risk And Uncertainty


Modelling Under Risk And Uncertainty
DOWNLOAD
Author : Etienne de Rocquigny
language : en
Publisher: John Wiley & Sons
Release Date : 2012-04-30

Modelling Under Risk And Uncertainty written by Etienne de Rocquigny and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-30 with Mathematics categories.


Modelling has permeated virtually all areas of industrial, environmental, economic, bio-medical or civil engineering: yet the use of models for decision-making raises a number of issues to which this book is dedicated: How uncertain is my model ? Is it truly valuable to support decision-making ? What kind of decision can be truly supported and how can I handle residual uncertainty ? How much refined should the mathematical description be, given the true data limitations ? Could the uncertainty be reduced through more data, increased modeling investment or computational budget ? Should it be reduced now or later ? How robust is the analysis or the computational methods involved ? Should / could those methods be more robust ? Does it make sense to handle uncertainty, risk, lack of knowledge, variability or errors altogether ? How reasonable is the choice of probabilistic modeling for rare events ? How rare are the events to be considered ? How far does it make sense to handle extreme events and elaborate confidence figures ? Can I take advantage of expert / phenomenological knowledge to tighten the probabilistic figures ? Are there connex domains that could provide models or inspiration for my problem ? Written by a leader at the crossroads of industry, academia and engineering, and based on decades of multi-disciplinary field experience, Modelling Under Risk and Uncertainty gives a self-consistent introduction to the methods involved by any type of modeling development acknowledging the inevitable uncertainty and associated risks. It goes beyond the “black-box” view that some analysts, modelers, risk experts or statisticians develop on the underlying phenomenology of the environmental or industrial processes, without valuing enough their physical properties and inner modelling potential nor challenging the practical plausibility of mathematical hypotheses; conversely it is also to attract environmental or engineering modellers to better handle model confidence issues through finer statistical and risk analysis material taking advantage of advanced scientific computing, to face new regulations departing from deterministic design or support robust decision-making. Modelling Under Risk and Uncertainty: Addresses a concern of growing interest for large industries, environmentalists or analysts: robust modeling for decision-making in complex systems. Gives new insights into the peculiar mathematical and computational challenges generated by recent industrial safety or environmental control analysis for rare events. Implements decision theory choices differentiating or aggregating the dimensions of risk/aleatory and epistemic uncertainty through a consistent multi-disciplinary set of statistical estimation, physical modelling, robust computation and risk analysis. Provides an original review of the advanced inverse probabilistic approaches for model identification, calibration or data assimilation, key to digest fast-growing multi-physical data acquisition. Illustrated with one favourite pedagogical example crossing natural risk, engineering and economics, developed throughout the book to facilitate the reading and understanding. Supports Master/PhD-level course as well as advanced tutorials for professional training Analysts and researchers in numerical modeling, applied statistics, scientific computing, reliability, advanced engineering, natural risk or environmental science will benefit from this book.