Fundamentals Of Deep Learning And Computer Vision

DOWNLOAD
Download Fundamentals Of Deep Learning And Computer Vision PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Deep Learning And Computer Vision book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Fundamentals Of Deep Learning And Computer Vision
DOWNLOAD
Author : Nikhil Singh
language : en
Publisher: BPB Publications
Release Date : 2020-02-24
Fundamentals Of Deep Learning And Computer Vision written by Nikhil Singh and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-24 with Computers categories.
Master Computer Vision concepts using Deep Learning with easy-to-follow steps DESCRIPTIONÊ This book starts with setting up a Python virtual environment with the deep learning framework TensorFlow and then introduces the fundamental concepts of TensorFlow. Before moving on to Computer Vision, you will learn about neural networks and related aspects such as loss functions, gradient descent optimization, activation functions and how backpropagation works for training multi-layer perceptrons. To understand how the Convolutional Neural Network (CNN) is used for computer vision problems, you need to learn about the basic convolution operation. You will learn how CNN is different from a multi-layer perceptron along with a thorough discussion on the different building blocks of the CNN architecture such as kernel size, stride, padding, and pooling and finally learn how to build a small CNN model.Ê Next, you will learn about different popular CNN architectures such as AlexNet, VGGNet, Inception, and ResNets along with different object detection algorithms such as RCNN, SSD, and YOLO. The book concludes with a chapter on sequential models where you will learn about RNN, GRU, and LSTMs and their architectures and understand their applications in machine translation, image/video captioning and video classification. KEY FEATURESÊ Setting up the Python and TensorFlow environment Learn core Tensorflow concepts with the latest TF version 2.0 Learn Deep Learning for computer vision applicationsÊ Understand different computer vision concepts and use-cases Understand different state-of-the-art CNN architecturesÊ Build deep neural networks with transfer Learning using features from pre-trained CNN models Apply computer vision concepts with easy-to-follow code in Jupyter Notebook WHAT WILL YOU LEARNÊ This book will help the readers to understand and apply the latest Deep Learning technologies to different interesting computer vision applications without any prior domain knowledge of image processing. Thus, helping the users to acquire new skills specific to Computer Vision and Deep Learning and build solutions to real-life problems such as Image Classification and Object Detection. This book will serve as a basic guide for all the beginners to master Deep Learning and Computer Vision with lucid and intuitive explanations using basic mathematical concepts. It also explores these concepts with popular the deep learning framework TensorFlow. WHO THIS BOOK IS FOR This book is for all the Data Science enthusiasts and practitioners who intend to learn and master Computer Vision concepts and their applications using Deep Learning. This book assumes a basic Python understanding with hands-on experience. A basic senior secondary level understanding of Mathematics will help the reader to make the best out of this book.Ê Table of Contents 1. Introduction to TensorFlow 2. Introduction to Neural NetworksÊ 3. Convolutional Neural NetworkÊÊ 4. CNN Architectures 5. Sequential Models
Deep Learning Essentials
DOWNLOAD
Author : Anurag Bhardwaj
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-30
Deep Learning Essentials written by Anurag Bhardwaj and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-30 with Computers categories.
Get to grips with the essentials of deep learning by leveraging the power of Python Key Features Your one-stop solution to get started with the essentials of deep learning and neural network modeling Train different kinds of neural networks to tackle various problems in Natural Language Processing, computer vision, speech recognition, and more Covers popular Python libraries such as Tensorflow, Keras, and more, along with tips on training, deploying and optimizing your deep learning models in the best possible manner Book Description Deep Learning a trending topic in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning, which is quite tricky to master. This book will help you take your first steps in training efficient deep learning models and applying them in various practical scenarios. You will model, train, and deploy different kinds of neural networks such as Convolutional Neural Network, Recurrent Neural Network, and will see some of their applications in real-world domains including computer vision, natural language processing, speech recognition, and so on. You will build practical projects such as chatbots, implement reinforcement learning to build smart games, and develop expert systems for image captioning and processing. Popular Python library such as TensorFlow is used in this book to build the models. This book also covers solutions for different problems you might come across while training models, such as noisy datasets, small datasets, and more. This book does not assume any prior knowledge of deep learning. By the end of this book, you will have a firm understanding of the basics of deep learning and neural network modeling, along with their practical applications. What you will learn Get to grips with the core concepts of deep learning and neural networks Set up deep learning library such as TensorFlow Fine-tune your deep learning models for NLP and Computer Vision applications Unify different information sources, such as images, text, and speech through deep learning Optimize and fine-tune your deep learning models for better performance Train a deep reinforcement learning model that plays a game better than humans Learn how to make your models get the best out of your GPU or CPU Who this book is for Aspiring data scientists and machine learning experts who have limited or no exposure to deep learning will find this book to be very useful. If you are looking for a resource that gets you up and running with the fundamentals of deep learning and neural networks, this book is for you. As the models in the book are trained using the popular Python-based libraries such as Tensorflow and Keras, it would be useful to have sound programming knowledge of Python.
Artificial Intelligence And Deep Learning Essentials
DOWNLOAD
Author : James Russell
language : en
Publisher: Independently Published
Release Date : 2018-05-12
Artificial Intelligence And Deep Learning Essentials written by James Russell and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-12 with categories.
Get to grips with the essentials of deep learning by leveraging the power of PythonKey Features Your one-stop solution to get started with the essentials of deep learning and neural network modeling Train different kinds of neural networks to tackle various problems in Natural Language Processing, computer vision, speech recognition, and more Covers popular Python libraries such as Tensorflow, Keras, and more, along with tips on training, deploying and optimizing your deep learning models in the best possible manner Deep Learning a trending topic in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning, which is quite tricky to master. This book will help you take your first steps in training efficient deep learning models and applying them in various practical scenarios. You will model, train, and deploy different kinds of neural networks such as Convolutional Neural Network, Recurrent Neural Network, and will see some of their applications in real-world domains including computer vision, natural language processing, speech recognition, and so on. You will build practical projects such as chatbots, implement reinforcement learning to build smart games, and develop expert systems for image captioning and processing. Popular Python library such as TensorFlow is used in this book to build the models. This book also covers solutions for different problems you might come across while training models, such as noisy datasets, small datasets, and more. This book does not assume any prior knowledge of deep learning. By the end of this book, you will have a firm understanding of the basics of deep learning and neural network modeling, along with their practical applications.What you will learn Get to grips with the core concepts of deep learning and neural networks Set up deep learning library such as TensorFlow Fine-tune your deep learning models for NLP and Computer Vision applications Unify different information sources, such as images, text, and speech through deep learning Optimize and fine-tune your deep learning models for better performance Train a deep reinforcement learning model that plays a game better than humans Learn how to make your models get the best out of your GPU or CPU Who This Book Is For Aspiring data scientists and machine learning experts who have limited or no exposure to deep learning will find this book to be very useful. If you are looking for a resource that gets you up and running with the fundamentals of deep learning and neural networks, this book is for you. As the models in the book are trained using the popular Python-based libraries such as Tensorflow and Keras, it would be useful to have sound programming knowledge of Python. Table of Contents 1. What is artificial intelligence 2. Why is the artificial intelligence important ? 3. Applications of Machine Learning 4. Semantics, Probability and IA 5. Numerical Computation 6. Sequence Modeling, Recurrent and Recursive Nets 7. Autoencoders 8. Markov Chains, Monte Carlo Methods, and Machine Learning
Fundamentals Of Deep Learning
DOWNLOAD
Author : Nikhil Buduma
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-25
Fundamentals Of Deep Learning written by Nikhil Buduma and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-25 with Computers categories.
With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning
Deep Learning In Computer Vision
DOWNLOAD
Author : Mrs. Abha Pathak
language : en
Publisher: Xoffencer International Book Publication House
Release Date : 2024-08-12
Deep Learning In Computer Vision written by Mrs. Abha Pathak and has been published by Xoffencer International Book Publication House this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-12 with Computers categories.
Deep learning has been used to bring computer vision to new heights ever since it was originally introduced. As a result, the way in which computers receive and make sense of visual input has been revolutionised as a result of this. The field of study known as computer vision is responsible for enabling computers to observe, comprehend, and react to visual sources of information. Unfortunately, artificial intelligence has been having a difficult time with computer vision for a substantial length of time. These approaches were not able to deal with the complexity and unpredictability of actual data when they were initially established; nonetheless, when it was first developed, its basis comprised of manually produced features and rule-based algorithms. Nevertheless, the game has been changed as a result of the implementation of deep learning techniques such as convolution neural networks (CNNs) and other forms of training. The large amounts of data that deep learning models are able to automatically learn characteristics from might possibly be of great benefit to a wide variety of vocations, including but not limited to object detection, picture segmentation, and facial recognition, to name just a few examples. In addition, there are a great number of other occupations. The availability of vast datasets, the creation of complicated algorithms, and the availability of powerful computer resources (particularly graphics processing units) have all contributed to the accomplishment of this goal. Consequently, as a consequence of deep learning, it is now possible for computers to perform as well as humans in a variety of computer vision tasks. There are many other fields that have been significantly impacted as a result of this, such as the medical sector, the transportation industry, the arts, and the commercial world. Because of this quick progress, the field of computer vision is continually undergoing development, and new ideas are being produced on a consistent basis. This is a consequence of the rapid improvement that has taken place. This introduction provides an overview of the concepts, methods, problems, and applications of deep learning in the real world. It also serves as a framework for a comprehensive investigation of the ways in which deep learning is influencing computer vision.
Deep Learning Fundamentals Theory And Applications
DOWNLOAD
Author : Kaizhu Huang
language : en
Publisher: Springer
Release Date : 2019-02-15
Deep Learning Fundamentals Theory And Applications written by Kaizhu Huang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-15 with Medical categories.
The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing. Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field. This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in studying or exploring the potential of exploiting deep learning algorithms. It will also be of special interest to researchers in the area of AI, pattern recognition, machine learning and related areas, alongside engineers interested in applying deep learning models in existing or new practical applications.
Deep Learning
DOWNLOAD
Author : Siddhartha Bhattacharyya
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2020-06-22
Deep Learning written by Siddhartha Bhattacharyya and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-22 with Computers categories.
This book focuses on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it provides an insight of deep neural networks in action with illustrative coding examples. Deep learning is a new area of machine learning research which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non-immediately related fields, for example between air pressure recordings and English words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g. classification) and/or unsupervised (e.g. pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.
Elements Of Deep Learning For Computer Vision
DOWNLOAD
Author : Bharat Sikka
language : en
Publisher: BPB Publications
Release Date : 2021-06-24
Elements Of Deep Learning For Computer Vision written by Bharat Sikka and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-24 with Computers categories.
Conceptualizing deep learning in computer vision applications using PyTorch and Python libraries. KEY FEATURES ● Covers a variety of computer vision projects, including face recognition and object recognition such as Yolo, Faster R-CNN. ● Includes graphical representations and illustrations of neural networks and teaches how to program them. ● Includes deep learning techniques and architectures introduced by Microsoft, Google, and the University of Oxford. DESCRIPTION Elements of Deep Learning for Computer Vision gives a thorough understanding of deep learning and provides highly accurate computer vision solutions while using libraries like PyTorch. This book introduces you to Deep Learning and explains all the concepts required to understand the basic working, development, and tuning of a neural network using Pytorch. The book then addresses the field of computer vision using two libraries, including the Python wrapper/version of OpenCV and PIL. After establishing and understanding both the primary concepts, the book addresses them together by explaining Convolutional Neural Networks(CNNs). CNNs are further elaborated using top industry standards and research to explain how they provide complicated Object Detection in images and videos, while also explaining their evaluation. Towards the end, the book explains how to develop a fully functional object detection model, including its deployment over APIs. By the end of this book, you are well-equipped with the role of deep learning in the field of computer vision along with a guided process to design deep learning solutions. WHAT YOU WILL LEARN ● Get to know the mechanism of deep learning and how neural networks operate. ● Learn to develop a highly accurate neural network model. ● Access to rich Python libraries to address computer vision challenges. ● Build deep learning models using PyTorch and learn how to deploy using the API. ● Learn to develop Object Detection and Face Recognition models along with their deployment. WHO THIS BOOK IS FOR This book is for the readers who aspire to gain a strong fundamental understanding of how to infuse deep learning into computer vision and image processing applications. Readers are expected to have intermediate Python skills. No previous knowledge of PyTorch and Computer Vision is required. TABLE OF CONTENTS 1. An Introduction to Deep Learning 2. Supervised Learning 3. Gradient Descent 4. OpenCV with Python 5. Python Imaging Library and Pillow 6. Introduction to Convolutional Neural Networks 7. GoogLeNet, VGGNet, and ResNet 8. Understanding Object Detection 9. Popular Algorithms for Object Detection 10. Faster RCNN with PyTorch and YoloV4 with Darknet 11. Comparing Algorithms and API Deployment with Flask 12. Applications in Real World
Fundamentals Of Computer Vision
DOWNLOAD
Author : Wesley E. Snyder
language : en
Publisher: Cambridge University Press
Release Date : 2017-09-28
Fundamentals Of Computer Vision written by Wesley E. Snyder and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-28 with Computers categories.
This book equips students with crucial mathematical and algorithmic tools to understand complete computer vision systems.
Handbook Of Research On Machine Learning
DOWNLOAD
Author : Monika Mangla
language : en
Publisher: CRC Press
Release Date : 2022-08-04
Handbook Of Research On Machine Learning written by Monika Mangla and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-04 with Computers categories.
This volume takes the reader on a technological voyage of machine learning advancements, highlighting the systematic changes in algorithms, challenges, and constraints. The technological advancements in the ML arena have transformed and revolutionized several fields, including transportation, agriculture, finance, weather monitoring, and others. This book brings together researchers, authors, industrialists, and academicians to cover a vast selection of topics in ML, starting with the rudiments of machine learning approaches and going on to specific applications in healthcare and industrial automation. The book begins with an overview of the ethics, security and privacy issues, future directions, and challenges in machine learning as well as a systematic review of deep learning techniques and provides an understanding of building generative adversarial networks. Chapters explore predictive data analytics for health issues. The book also adds a macro dimension by highlighting the industrial applications of machine learning, such as in the steel industry, for urban information retrieval, in garbage detection, in measuring air pollution, for stock market predictions, for underwater fish detection, as a fake news predictor, and more.