Machine Learning Based Bug Handling In Large Scale Software Development

DOWNLOAD
Download Machine Learning Based Bug Handling In Large Scale Software Development PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Based Bug Handling In Large Scale Software Development book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning Based Bug Handling In Large Scale Software Development
DOWNLOAD
Author : Leif Jonsson
language : en
Publisher: Linköping University Electronic Press
Release Date : 2018-05-17
Machine Learning Based Bug Handling In Large Scale Software Development written by Leif Jonsson and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-17 with categories.
This thesis investigates the possibilities of automating parts of the bug handling process in large-scale software development organizations. The bug handling process is a large part of the mostly manual, and very costly, maintenance of software systems. Automating parts of this time consuming and very laborious process could save large amounts of time and effort wasted on dealing with bug reports. In this thesis we focus on two aspects of the bug handling process, bug assignment and fault localization. Bug assignment is the process of assigning a newly registered bug report to a design team or developer. Fault localization is the process of finding where in a software architecture the fault causing the bug report should be solved. The main reason these tasks are not automated is that they are considered hard to automate, requiring human expertise and creativity. This thesis examines the possi- bility of using machine learning techniques for automating at least parts of these processes. We call these automated techniques Automated Bug Assignment (ABA) and Automatic Fault Localization (AFL), respectively. We treat both of these problems as classification problems. In ABA, the classes are the design teams in the development organization. In AFL, the classes consist of the software components in the software architecture. We focus on a high level fault localization that it is suitable to integrate into the initial support flow of large software development organizations. The thesis consists of six papers that investigate different aspects of the AFL and ABA problems. The first two papers are empirical and exploratory in nature, examining the ABA problem using existing machine learning techniques but introducing ensembles into the ABA context. In the first paper we show that, like in many other contexts, ensembles such as the stacked generalizer (or stacking) improves classification accuracy compared to individual classifiers when evaluated using cross fold validation. The second paper thor- oughly explore many aspects such as training set size, age of bug reports and different types of evaluation of the ABA problem in the context of stacking. The second paper also expands upon the first paper in that the number of industry bug reports, roughly 50,000, from two large-scale industry software development contexts. It is still as far as we are aware, the largest study on real industry data on this topic to this date. The third and sixth papers, are theoretical, improving inference in a now classic machine learning tech- nique for topic modeling called Latent Dirichlet Allocation (LDA). We show that, unlike the currently dominating approximate approaches, we can do parallel inference in the LDA model with a mathematically correct algorithm, without sacrificing efficiency or speed. The approaches are evaluated on standard research datasets, measuring various aspects such as sampling efficiency and execution time. Paper four, also theoretical, then builds upon the LDA model and introduces a novel supervised Bayesian classification model that we call DOLDA. The DOLDA model deals with both textual content and, structured numeric, and nominal inputs in the same model. The approach is evaluated on a new data set extracted from IMDb which have the structure of containing both nominal and textual data. The model is evaluated using two approaches. First, by accuracy, using cross fold validation. Second, by comparing the simplicity of the final model with that of other approaches. In paper five we empirically study the performance, in terms of prediction accuracy, of the DOLDA model applied to the AFL problem. The DOLDA model was designed with the AFL problem in mind, since it has the exact structure of a mix of nominal and numeric inputs in combination with unstructured text. We show that our DOLDA model exhibits many nice properties, among others, interpretability, that the research community has iden- tified as missing in current models for AFL.
Machine Learning Based Bug Handling In Large Scale Software Development
DOWNLOAD
Author : Leif Jonsson
language : en
Publisher:
Release Date : 2018
Machine Learning Based Bug Handling In Large Scale Software Development written by Leif Jonsson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
This thesis investigates the possibilities of automating parts of the bug handling process in large-scale software development organizations. The bug handling process is a large part of the mostly manual, and very costly, maintenance of software systems. Automating parts of this time consuming and very laborious process could save large amounts of time and effort wasted on dealing with bug reports. In this thesis we focus on two aspects of the bug handling process, bug assignment and fault localization. Bug assignment is the process of assigning a newly registered bug report to a design team or developer. Fault localization is the process of finding where in a software architecture the fault causing the bug report should be solved. The main reason these tasks are not automated is that they are considered hard to automate, requiring human expertise and creativity. This thesis examines the possi- bility of using machine learning techniques for automating at least parts of these processes. We call these automated techniques Automated Bug Assignment (ABA) and Automatic Fault Localization (AFL), respectively. We treat both of these problems as classification problems. In ABA, the classes are the design teams in the development organization. In AFL, the classes consist of the software components in the software architecture. We focus on a high level fault localization that it is suitable to integrate into the initial support flow of large software development organizations. The thesis consists of six papers that investigate different aspects of the AFL and ABA problems. The first two papers are empirical and exploratory in nature, examining the ABA problem using existing machine learning techniques but introducing ensembles into the ABA context. In the first paper we show that, like in many other contexts, ensembles such as the stacked generalizer (or stacking) improves classification accuracy compared to individual classifiers when evaluated using cross fold validation. The second paper thor- oughly explore many aspects such as training set size, age of bug reports and different types of evaluation of the ABA problem in the context of stacking. The second paper also expands upon the first paper in that the number of industry bug reports, roughly 50,000, from two large-scale industry software development contexts. It is still as far as we are aware, the largest study on real industry data on this topic to this date. The third and sixth papers, are theoretical, improving inference in a now classic machine learning tech- nique for topic modeling called Latent Dirichlet Allocation (LDA). We show that, unlike the currently dominating approximate approaches, we can do parallel inference in the LDA model with a mathematically correct algorithm, without sacrificing efficiency or speed. The approaches are evaluated on standard research datasets, measuring various aspects such as sampling efficiency and execution time. Paper four, also theoretical, then builds upon the LDA model and introduces a novel supervised Bayesian classification model that we call DOLDA. The DOLDA model deals with both textual content and, structured numeric, and nominal inputs in the same model. The approach is evaluated on a new data set extracted from IMDb which have the structure of containing both nominal and textual data. The model is evaluated using two approaches. First, by accuracy, using cross fold validation. Second, by comparing the simplicity of the final model with that of other approaches. In paper five we empirically study the performance, in terms of prediction accuracy, of the DOLDA model applied to the AFL problem. The DOLDA model was designed with the AFL problem in mind, since it has the exact structure of a mix of nominal and numeric inputs in combination with unstructured text. We show that our DOLDA model exhibits many nice properties, among others, interpretability, that the research community has iden- tified as missing in current models for AFL.
System Level Design Of Gpu Based Embedded Systems
DOWNLOAD
Author : Arian Maghazeh
language : en
Publisher: Linköping University Electronic Press
Release Date : 2018-12-07
System Level Design Of Gpu Based Embedded Systems written by Arian Maghazeh and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-07 with categories.
Modern embedded systems deploy several hardware accelerators, in a heterogeneous manner, to deliver high-performance computing. Among such devices, graphics processing units (GPUs) have earned a prominent position by virtue of their immense computing power. However, a system design that relies on sheer throughput of GPUs is often incapable of satisfying the strict power- and time-related constraints faced by the embedded systems. This thesis presents several system-level software techniques to optimize the design of GPU-based embedded systems under various graphics and non-graphics applications. As compared to the conventional application-level optimizations, the system-wide view of our proposed techniques brings about several advantages: First, it allows for fully incorporating the limitations and requirements of the various system parts in the design process. Second, it can unveil optimization opportunities through exposing the information flow between the processing components. Third, the techniques are generally applicable to a wide range of applications with similar characteristics. In addition, multiple system-level techniques can be combined together or with application-level techniques to further improve the performance. We begin by studying some of the unique attributes of GPU-based embedded systems and discussing several factors that distinguish the design of these systems from that of the conventional high-end GPU-based systems. We then proceed to develop two techniques that address an important challenge in the design of GPU-based embedded systems from different perspectives. The challenge arises from the fact that GPUs require a large amount of workload to be present at runtime in order to deliver a high throughput. However, for some embedded applications, collecting large batches of input data requires an unacceptable waiting time, prompting a trade-off between throughput and latency. We also develop an optimization technique for GPU-based applications to address the memory bottleneck issue by utilizing the GPU L2 cache to shorten data access time. Moreover, in the area of graphics applications, and in particular with a focus on mobile games, we propose a power management scheme to reduce the GPU power consumption by dynamically adjusting the display resolution, while considering the user's visual perception at various resolutions. We also discuss the collective impact of the proposed techniques in tackling the design challenges of emerging complex systems. The proposed techniques are assessed by real-life experimentations on GPU-based hardware platforms, which demonstrate the superior performance of our approaches as compared to the state-of-the-art techniques.
Empirical Studies In Machine Psychology
DOWNLOAD
Author : Robert Johansson
language : en
Publisher: Linköping University Electronic Press
Release Date : 2024-10-09
Empirical Studies In Machine Psychology written by Robert Johansson and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-09 with categories.
This thesis presents Machine Psychology as an interdisciplinary paradigm that integrates learning psychology principles with an adaptive computer system for the development of Artificial General Intelligence (AGI). By synthesizing behavioral psychology with a formal intelligence model, the Non-Axiomatic Reasoning System (NARS), this work explores the potential of operant conditioning paradigms to advance AGI research. The thesis begins by introducing the conceptual foundations of Machine Psychology, detailing its alignment with the theoretical constructs of learning psychology and the formalism of NARS. It then progresses through a series of empirical studies designed to systematically investigate the emergence of increasingly complex cognitive behaviors as NARS interacts with its environment. Initially, operant conditioning is established as a foundational principle for developing adaptive behavior with NARS. Subsequent chapters explore increasingly sophisticated cognitive capabilities, all studied with NARS using experimental paradigms from operant learning psychology: Generalized identity matching, Functional equivalence, and Arbitrarily Applicable Relational Responding. Throughout this research, Machine Psychology is demonstrated to be a promising framework for guiding AGI research, allowing both the manipulation of environmental contingencies and the system’s intrinsic logical processes. The thesis contributes to AGI research by showing how using operant psychological paradigms with NARS can enable cognitive abilities similar to human cognition. These findings set the stage for AGI systems that learn and adapt more like humans, potentially advancing the creation of more general and flexible AI. Denna avhandling introducerar Maskinpsykologi som ett tvärvetenskapligt område där principer från inlärningspsykologi integreras med ett adaptivt datorsystem. Genom att kombinera forskning från beteendepsykologi med en formell modell för intelligens (Non-Axiomatic Reasoning System; NARS), undersöker avhandlingen hur operant betingning kan användas för att driva utvecklingen av Artificiell General Intelligens (AGI) framåt. Avhandlingen börjar med att förklara grunderna i Maskinpsykologi och hur dessa relaterar till både inlärningspsykologi och NARS. Därefter presenteras en serie experiment som systematiskt undersöker hur allt mer komplexa kognitiva beteenden kan uppstå när NARS interagerar med sin omgivning. Till att börja med etableras operant betingning som en central metod för att utveckla adaptiva beteenden med NARS. I de följande kapitlen utforskas hur NARS, genom experiment inspirerade av operant inlärningspsykologi, kan utveckla mer avancerade kognitiva förmågor som till exempel generaliserad identitetsmatchning, funktionell ekvivalens och så kallade arbiträrt applicerbara relationsresponser. Denna forskning visar att Maskinpsykologi är ett lovande verktyg för att vägleda AGI-forskning, eftersom det möjliggör att både påverka omgivningsfaktorer och styra systemets interna logiska processer. Avhandlingen bidrar till AGI-forskning genom att visa hur operanta psykologiska metoder, tillämpade på NARS, kan möjliggöra kognitiva förmågor som liknar mänskligt tänkande. Dessa insikter öppnar nya möjligheter för att utveckla AI-system som kan lära sig och anpassa sig på ett mer mänskligt sätt, vilket kan leda till skapandet av mer generell och flexibel AI.
Distributed Moving Base Driving Simulators
DOWNLOAD
Author : Anders Andersson
language : en
Publisher: Linköping University Electronic Press
Release Date : 2019-04-30
Distributed Moving Base Driving Simulators written by Anders Andersson and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with categories.
Development of new functionality and smart systems for different types of vehicles is accelerating with the advent of new emerging technologies such as connected and autonomous vehicles. To ensure that these new systems and functions work as intended, flexible and credible evaluation tools are necessary. One example of this type of tool is a driving simulator, which can be used for testing new and existing vehicle concepts and driver support systems. When a driver in a driving simulator operates it in the same way as they would in actual traffic, you get a realistic evaluation of what you want to investigate. Two advantages of a driving simulator are (1.) that you can repeat the same situation several times over a short period of time, and (2.) you can study driver reactions during dangerous situations that could result in serious injuries if they occurred in the real world. An important component of a driving simulator is the vehicle model, i.e., the model that describes how the vehicle reacts to its surroundings and driver inputs. To increase the simulator realism or the computational performance, it is possible to divide the vehicle model into subsystems that run on different computers that are connected in a network. A subsystem can also be replaced with hardware using so-called hardware-in-the-loop simulation, and can then be connected to the rest of the vehicle model using a specified interface. The technique of dividing a model into smaller subsystems running on separate nodes that communicate through a network is called distributed simulation. This thesis investigates if and how a distributed simulator design might facilitate the maintenance and new development required for a driving simulator to be able to keep up with the increasing pace of vehicle development. For this purpose, three different distributed simulator solutions have been designed, built, and analyzed with the aim of constructing distributed simulators, including external hardware, where the simulation achieves the same degree of realism as with a traditional driving simulator. One of these simulator solutions has been used to create a parameterized powertrain model that can be configured to represent any of a number of different vehicles. Furthermore, the driver's driving task is combined with the powertrain model to monitor deviations. After the powertrain model was created, subsystems from a simulator solution and the powertrain model have been transferred to a Modelica environment. The goal is to create a framework for requirement testing that guarantees sufficient realism, also for a distributed driving simulation. The results show that the distributed simulators we have developed work well overall with satisfactory performance. It is important to manage the vehicle model and how it is connected to a distributed system. In the distributed driveline simulator setup, the network delays were so small that they could be ignored, i.e., they did not affect the driving experience. However, if one gradually increases the delays, a driver in the distributed simulator will change his/her behavior. The impact of communication latency on a distributed simulator also depends on the simulator application, where different usages of the simulator, i.e., different simulator studies, will have different demands. We believe that many simulator studies could be performed using a distributed setup. One issue is how modifications to the system affect the vehicle model and the desired behavior. This leads to the need for methodology for managing model requirements. In order to detect model deviations in the simulator environment, a monitoring aid has been implemented to help notify test managers when a model behaves strangely or is driven outside of its validated region. Since the availability of distributed laboratory equipment can be limited, the possibility of using Modelica (which is an equation-based and object-oriented programming language) for simulating subsystems is also examined. Implementation of the model in Modelica has also been extended with requirements management, and in this work a framework is proposed for automatically evaluating the model in a tool.
Software Quality The Complexity And Challenges Of Software Engineering And Software Quality In The Cloud
DOWNLOAD
Author : Dietmar Winkler
language : en
Publisher: Springer
Release Date : 2019-01-07
Software Quality The Complexity And Challenges Of Software Engineering And Software Quality In The Cloud written by Dietmar Winkler and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-07 with Computers categories.
This book constitutes the refereed proceedings of the 11th Software Quality Days Conference, SWQD 2019, held in Vienna, Austria, in January 2019. The Software Quality Days (SWQD) conference started in 2009 and has grown to the biggest conference on software quality in Europe with a strong community. The program of the SWQD conference is designed to encompass a stimulating mixture of practical presentations and new research topics in scientific presentations. The guiding conference topic of the SWQD 2019 is “The Complexity and Challenges of Software Engineering and Software Quality in the Cloud”. The 5 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 17 submissions. The volume also contains 2 invited talks. The contributions were organized in topical sections named: multi-disciplinary systems and software engineering; software quality and process improvement; software testing; knowledge engineering and machine learning; source code analysis; and software maintenance.
Human Centred Design Of Socially Interactive Virtual Agents
DOWNLOAD
Author : Emma Mainza Chilufya
language : en
Publisher: Linköping University Electronic Press
Release Date : 2025-02-24
Human Centred Design Of Socially Interactive Virtual Agents written by Emma Mainza Chilufya and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-24 with categories.
The thesis is within the field of cognitive science, set within the domains of situated cognition and mediated action with a focus on mediation in Human- Computer Interaction (HCI). It discusses cognition in relation to users, Intelligent Virtual Agents (IVAs), and the interaction environment. The perspectives and actions of users (humans) significantly influence the course of the interaction. IVAs as mediators facilitate interactions between users and their environments. As agents, they actively engage with users, influencing their decisions and behaviours. User involvement in the design process is important for the design of interactive systems. When properly implemented, using the correct methods, principles, and techniques can lead to the development of systems that are effective, efficient, and satisfying to use. IVA research has shown a lack of user participation methodologies in the design process. The design of IVAs often focuses on individual elements and not the IVA as an integrated whole. As a result, these design insights do not easily convert into actionable guidelines. User involvement is primarily seen during the evaluation phase. This leads to the purpose of looking at the design of interactive interfaces of embodied agents (virtual and physical) set in social interactive spaces by involving the users in the conceptual generation and prototyping phase. The research questions are: How can we design interactive virtual agents for social interactive spaces? and How can we apply human-centred design methods to develop interactive virtual agents for social interactive spaces? Two case studies: a virtual receptionist for a university department and a reading robot (BookBot) for fourth-grade pupils are conducted. Each case study involved a concept generation and prototyping phase with the users using human-centred design (HCD) methods and tools. Prototypes were developed based on the conceptual phase findings and evaluated with the users. One key contribution is the application of HCD methodologies in the design of IVAs within social interactive spaces. This includes considerations of the context of interaction: mediation patterns, and the spaces of interaction. Another contribution is the introduction of novel design approaches/ solution features and competencies that designers should have when designing IVAs in social interactive spaces. The thesis presents exemplars of IVAs in these spaces. Avhandlingen ligger inom området kognitiv vetenskap, med fokus på situerad kognition och medierad handling inom Human-Computer Interaction (HCI). Den diskuterar kognition i relation till användare, intelligenta virtuella agenter (IVAs) och interaktionsmiljön. Användarnas (människors) perspektiv och handlingar påverkar i hög grad interaktionens förlopp. IVAs som medlare underlättar interaktioner mellan användare och deras miljöer. Som agenter engagerar de sig aktivt med användare och påverkar deras beslut och beteenden. Användarinvolvering i designprocessen är viktig for utformningen av interaktiva system. När den genomförs korrekt, med rätt metoder, principer och tekniker, kan den leda till utveckling av system som är effektiva, ändamålsenliga och tillfredsställande att använda. Forskning om IVAs har visat en brist på användarmetoder i designprocessen. Designen av IVAs fokuserar ofta på individuella element och inte på IVA som en integrerad helhet. Som ett resultat är dessa designinsikter svara att omvandla till handlingsbara riktlinjer. Användardeltagande ses främst under utvärderingsfasen. Detta leder till syftet att undersöka designen av interaktiva gränssnitt för forkroppsligade agenter (virtuella och fysiska) i sociala interaktiva utrymmen genom att involvera användarna i den konceptuella genereringen och prototypfasen. Forskningsfrågorna är: Hur kan vi designa interaktiva virtuella agenter for sociala interaktiva utrymmen? och Hur kan vi tillämpa användarcentrerade designmetoder för att utveckla interaktiva virtuella agenter för sociala interaktiva utrymmen? Två fallstudier: en virtuell receptionist för en universitetsavdelning och en läsrobot (BookBot) för fjärdeklassare utförs. Varje fallstudie involverade en konceptgenererings- och prototypfas med användarna med hjälp av användarcentrerade designmetoder och verktyg. Prototyper utvecklades baserat på resultaten från den konceptuella fasen och utvärderades med användarna. Ett viktigt bidrag är tillämpningen av användarcentrerade designmetoder i designen av IVAs inom sociala interaktiva utrymmen. Detta inkluderar överväganden av interaktionskontexten: medlingsmönster och interaktionsutrymmen. Ett annat bidrag är introduktionen av nya designmetoder/lösningsfunktioner och kompetenser som designers bör ha när de designar IVAs i sociala interaktiva utrymmen. Avhandlingen presenterar exempel på IVAs i dessa utrymmen.
Designing Human Swarm Interaction Systems
DOWNLOAD
Author : Oscar Bjurling
language : en
Publisher: Linköping University Electronic Press
Release Date : 2025-02-20
Designing Human Swarm Interaction Systems written by Oscar Bjurling and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-20 with categories.
Swarms of Unmanned Aerial Vehicles (UAVs, or drones) are envisioned to transform various fields, from emergency response to law enforcement and military operations. Drone swarms provide scalable, adaptable, and decentralized solutions for dynamic work environments. However, the successful integration of these multi-agent systems into real-world settings presents significant challenges, particularly in terms of how humans can safely and effectively interact with and control these systems. Human-Swarm Interaction (HSI) aims to address these challenges by exploring how human operators can manage multiple drones in a cohesive manner, even under highly complex, uncertain conditions. This thesis studies the problem of designing effective interaction mechanisms and interfaces for human operators to command drone swarms, specifically addressing challenges such as managing a large number of drones, supporting operators’ situational awareness, and balancing between centralized and decentralized control. The research highlights the necessity of rethinking conventional approaches by introducing alternative conceptual models, such as the "choir" metaphor, which re-imagines drone swarms as coordinated, semi-centralized ensembles rather than purely emergent, decentralized collectives. This metaphor aims to balance the collective, often unpredictable behavior of drone swarms with the predictable, directed actions needed in operational environments. By demonstrating how this metaphor can be operationalized in an HSI system architecture, the thesis provides new avenues for conceptualizing human interaction with autonomous systems. Using a design research approach incorporating multiple-case study and scenario-based design activities to envision future swarm application in dialogue with prospective end users, the thesis develops and evaluates prototypes that embody these nuanced HSI concepts. The interface prototypes draw design inspiration from Real-Time Strategy (RTS) games. These elements include group commands, high-level mission planning, and resource pooling to create a hybrid interaction model that allows operators to maintain both a broad overview and precise control of multiple autonomous and collaborating drones. Domain expert evaluations of these prototypes in contexts such as firefighting and airport management validate the practical utility of these concepts. The findings emphasize the value of adopting a Human-Technology-Organization (HTO) perspective in the design of HSI systems. Rather than focusing solely on the interaction between humans and technology, this systems-thinking approach acknowledges that drone swarms must be integrated into larger organizational frameworks, such as emergency response command structures or airport ground operations teams. It demonstrates that successful deployment requires accounting for the broader organizational context, including roles, workflows, and coordination needs. This holistic approach to HSI system design ensures that drone swarms not only meet technical performance criteria, such as reliability, responsiveness, and scalability, but also align with human and organizational needs, facilitating their adoption and effective use in a wide range of real-world scenarios. Ultimately, these contributions are intended to bridge the gap between theoretical models of swarm control and practical deployment, advancing both the field of HSI and the broader adoption of drone swarm technologies. Svärmar av obemannade luftfarkoster (UAV, eller drönare) förväntas omvandla flera områden, exempelvis räddningsinsatser, brottsbekämpning, och militäroperationer. Drönarsvärmar innebar skalbara, anpassningsbara, och decentraliserade lösningar for dynamiska arbetsuppgifter. Den lyckade integreringen av dessa multi-agent-system i verkliga miljöer innebar dock betydande utmaningar, särskilt med avseende på hur människor säkert och effektivt interagerar med och kontrollerar dessa system. Forskningsfältet Människa-Svärm Interaktion (MSI) syftar till att möta dessa utmaningar genom att undersöka hur mänskliga operatorer kan hantera flera drönare på ett sammanhängande vis, även under komplexa och osäkra förhållanden. Denna avhandling utreder problemet att utforma effektiva och säkra interaktionsmekanismer och gränssnitt for mänskliga operatorer att leda drönarsvärmar, specifikt genom att adressera utmaningar som att hantera ett stort antal drönare, stödja operatorers situationsmedvetenhet, och balansera mellan centraliserad och decentraliserad kontroll. Avhandlingen betonar vikten av att ifrågasatta konventionella tillvägagångssätt genom att introducera alternativa konceptuella modeller, såsom "kör"-metaforen, som omtolkar drönarsvärmar som koordinerade, semicentraliserade ensembler snarare än rent decentraliserade kollektiv. Denna metafor syftar till att balansera det kollektiva, ofta oförutsägbara beteendet hos drönarsvärmar med de förutsägbara, riktade handlingar som behövs i operativa miljöer. Genom att visa hur denna metafor kan operationaliseras i en MSI-systemarkitektur, erbjuder avhandlingen nya sätt att konceptualisera mänsklig interaktion med autonoma system. Genom att tillämpa en designforskningsmetod som innefattar fallstudier och scenariobaserade designaktiviteter för att föreställa sig framtida svärmtillämpningar i dialog med potentiella slutanvändare, utvecklar och utvärderar avhandlingen prototyper som manifesterar dessa nyanserade MSI-koncept. Gränssnittens prototyper drar designinspiration från realtidsstrategispel (RTS). Dessa element inkluderar enhetshantering och kommandon på gruppnivå, strategisk uppdragsplanering, och resursdelning för att skapa en hybrid interaktionsmodell som gör det möjligt för operatörer att både bibehålla en bred lägesbild och utöva precis kontroll över flera autonoma och samverkande drönare. Domänexperters utvärderingar av dessa prototyper i arbetskontexter som brandbekämpning och flygplatsledning påvisar den praktiska användbarheten av dessa koncept. Resultaten betonar värdet av att anta ett Människa-Teknik-Organisation (MTO)-perspektiv vid utformningen av MSI-system. Snarare än att enbart fokusera på interaktionen mellan människor och teknik, erkänner detta systemtänkande tillvägagångssätt att drönarsvärmar måste integreras i större organisatoriska ramar, såsom ledningsstrukturer for räddningsinsatser eller markoperativa team på flygplatser. Det visar att framgångsrik implementering av drönarsvärmar kräver att systemutvecklare tar hänsyn till det bredare organisatoriska sammanhanget, inklusive roller, arbetsflöden, och samverkansbehov. Detta holistiska tillvägagångssatt för utformningen av MSI-system säkerställer att drönarsvärmar inte bara uppfyller tekniska prestandakriterier, såsom tillförlitlighet, responsivitet, och skalbarhet, utan också överensstämmer med mänskliga och organisatoriska behov, vilket underlättar deras införande och effektiv användning i en mängd olika tillämpningsscenarier. Över lag är dessa forskningsbidrag avsedda att överbrygga gapet mellan teoretiska modeller för svärmstyrning och praktisk implementering, och därmed avancera och främja både MSI-området och den bredare användningen av svärmteknologier.
Companion Robots For Older Adults
DOWNLOAD
Author : Sofia Thunberg
language : en
Publisher: Linköping University Electronic Press
Release Date : 2024-05-06
Companion Robots For Older Adults written by Sofia Thunberg and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-06 with categories.
This thesis explores, through a mixed-methods approach, what happens when companion robots are deployed in care homes for older adults by looking at different perspectives from key stakeholders. Nine studies are presented with decision makers in municipalities, care staff and older adults, as participants, and the studies have primarily been carried out in the field in care homes and activity centres, where both qualitative (e.g., observations and workshops) and quantitative data (surveys) have been collected. The thesis shows that companion robots seem to be here to stay and that they can contribute to a higher quality of life for some older adults. It further presents some challenges with a certain discrepancy between what decision makers want and what staff might be able to facilitate. For future research and use of companion robots, it is key to evaluate each robot model and potential use case separately and develop clear routines for how they should be used, and most importantly, let all stakeholders be part of the process. The knowledge contribution is the holistic view of how different actors affect each other when emerging robot technology is introduced in a care environment. Den här avhandlingen utforskar vad som händer när sällskapsrobotar införs på omsorgsboenden för äldre genom att titta på perspektiv från olika intressenter. Nio studier presenteras med kommunala beslutsfattare, vårdpersonal och äldre som deltagare. Studierna har i huvudsak genomförts i fält på särskilda boenden och aktivitetscenter där både kvalitativa- (exempelvis observationer och workshops) och kvantitativa data (enkäter) har samlats in. Avhandlingen visar att sällskapsrobotar verkar vara här för att stanna och att de kan bidra till en högre livskvalitet för vissa äldre. Den visar även på en del utmaningar med en viss diskrepans mellan vad beslutsfattare vill införa och vad personalen har möjlighet att utföra i sitt arbete. För framtida forskning och användning av sällskapsrobotar är det viktigt att utvärdera varje robotmodell och varje användningsområde var för sig och ta fram tydliga rutiner för hur de ska användas, och viktigast av allt, låta alla intressenter vara en del av processen. Kunskapsbidraget med avhandlingen är en helhetssyn på hur olika aktörer påverkar varandra när ny robotteknik introduceras i en vårdmiljö
Orchestrating A Resource Aware Edge
DOWNLOAD
Author : Klervie Toczé
language : en
Publisher: Linköping University Electronic Press
Release Date : 2024-09-02
Orchestrating A Resource Aware Edge written by Klervie Toczé and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-02 with Electronic books categories.
More and more services are moving to the cloud, attracted by the promise of unlimited resources that are accessible anytime, and are managed by someone else. However, hosting every type of service in large cloud datacenters is not possible or suitable, as some emerging applications have stringent latency or privacy requirements, while also handling huge amounts of data. Therefore, in recent years, a new paradigm has been proposed to address the needs of these applications: the edge computing paradigm. Resources provided at the edge (e.g., for computation and communication) are constrained, hence resource management is of crucial importance. The incoming load to the edge infrastructure varies both in time and space. Managing the edge infrastructure so that the appropriate resources are available at the required time and location is called orchestrating. This is especially challenging in case of sudden load spikes and when the orchestration impact itself has to be limited. This thesis enables edge computing orchestration with increased resource-awareness by contributing with methods, techniques, and concepts for edge resource management. First, it proposes methods to better understand the edge resource demand. Second, it provides solutions on the supply side for orchestrating edge resources with different characteristics in order to serve edge applications with satisfactory quality of service. Finally, the thesis includes a critical perspective on the paradigm, by considering sustainability challenges. To understand the demand patterns, the thesis presents a methodology for categorizing the large variety of use cases that are proposed in the literature as potential applications for edge computing. The thesis also proposes methods for characterizing and modeling applications, as well as for gathering traces from real applications and analyzing them. These different approaches are applied to a prototype from a typical edge application domain: Mixed Reality. The important insight here is that application descriptions or models that are not based on a real application may not be giving an accurate picture of the load. This can drive incorrect decisions about what should be done on the supply side and thus waste resources. Regarding resource supply, the thesis proposes two orchestration frameworks for managing edge resources and successfully dealing with load spikes while avoiding over-provisioning. The first one utilizes mobile edge devices while the second leverages the concept of spare devices. Then, focusing on the request placement part of orchestration, the thesis formalizes it in the case of applications structured as chains of functions (so-called microservices) as an instance of the Traveling Purchaser Problem and solves it using Integer Linear Programming. Two different energy metrics influencing request placement decisions are proposed and evaluated. Finally, the thesis explores further resource awareness. Sustainability challenges that should be highlighted more within edge computing are collected. Among those related to resource use, the strategy of sufficiency is promoted as a way forward. It involves aiming at only using the needed resources (no more, no less) with a goal of reducing resource usage. Different tools to adopt it are proposed and their use demonstrated through a case study.