[PDF] Neural Networks For Robotics - eBooks Review

Neural Networks For Robotics


Neural Networks For Robotics
DOWNLOAD

Download Neural Networks For Robotics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Networks For Robotics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Neural Networks In Robotics


Neural Networks In Robotics
DOWNLOAD
Author : George A. Bekey
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Neural Networks In Robotics written by George A. Bekey and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.


Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems.



Neural Networks For Robotics


Neural Networks For Robotics
DOWNLOAD
Author : Nancy Arana-Daniel
language : en
Publisher: CRC Press
Release Date : 2018-09-06

Neural Networks For Robotics written by Nancy Arana-Daniel and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-06 with Technology & Engineering categories.


The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures. Includes real-time examples for various robotic platforms. Discusses real-time implementation for land and aerial robots. Presents solutions for problems encountered in autonomous navigation. Explores the mathematical preliminaries needed to understand the proposed methodologies. Integrates computing, communications, control, sensing, planning, and other techniques by means of artificial neural networks for robotics.



Deep Learning For Robot Perception And Cognition


Deep Learning For Robot Perception And Cognition
DOWNLOAD
Author : Alexandros Iosifidis
language : en
Publisher: Academic Press
Release Date : 2022-02-04

Deep Learning For Robot Perception And Cognition written by Alexandros Iosifidis and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-04 with Technology & Engineering categories.


Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis



Neural Network Control Of Robot Manipulators And Non Linear Systems


Neural Network Control Of Robot Manipulators And Non Linear Systems
DOWNLOAD
Author : F W Lewis
language : en
Publisher: CRC Press
Release Date : 1998-11-30

Neural Network Control Of Robot Manipulators And Non Linear Systems written by F W Lewis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-11-30 with Technology & Engineering categories.


There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.



Adaptive Neural Network Control Of Robotic Manipulators


Adaptive Neural Network Control Of Robotic Manipulators
DOWNLOAD
Author : Shuzhi S. Ge
language : en
Publisher: World Scientific Series In Robotics And Intelligent Systems
Release Date : 1998

Adaptive Neural Network Control Of Robotic Manipulators written by Shuzhi S. Ge and has been published by World Scientific Series In Robotics And Intelligent Systems this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Technology & Engineering categories.


Recently, there has been considerable research interest in neural network control of robots, and satisfactory results have been obtained in solving some of the special issues associated with the problems of robot control in an "on-and-off" fashion. This book is dedicated to issues on adaptive control of robots based on neural networks. The text has been carefully tailored to (i) give a comprehensive study of robot dynamics, (ii) present structured network models for robots, and (iii) provide systematic approaches for neural network based adaptive controller design for rigid robots, flexible joint robots, and robots in constraint motion. Rigorous proof of the stability properties of adaptive neural network controllers is provided. Simulation examples are also presented to verify the effectiveness of the controllers, and practical implementation issues associated with the controllers are also discussed.



Robot Intelligence


Robot Intelligence
DOWNLOAD
Author : Honghai Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-05

Robot Intelligence written by Honghai Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-05 with Computers categories.


Robot intelligence has become a major focus of intelligent robotics. Recent innovation in computational intelligence including fuzzy learning, neural networks, evolutionary computation and classical Artificial Intelligence provides sufficient theoretical and experimental foundations for enabling robots to undertake a variety of tasks with reasonable performance. This book reflects the recent advances in the field from an advanced knowledge processing perspective; there have been attempts to solve knowledge based information explosion constraints by integrating computational intelligence in the robotics context.



Artificial Intelligence In Industrial Decision Making Control And Automation


Artificial Intelligence In Industrial Decision Making Control And Automation
DOWNLOAD
Author : S.G. Tzafestas
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Artificial Intelligence In Industrial Decision Making Control And Automation written by S.G. Tzafestas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


This book is concerned with Artificial Intelligence (AI) concepts and techniques as applied to industrial decision making, control and automation problems. The field of AI has been expanded enormously during the last years due to that solid theoretical and application results have accumulated. During the first stage of AI development most workers in the field were content with illustrations showing ideas at work on simple problems. Later, as the field matured, emphasis was turned to demonstrations that showed the capability of AI techniques to handle problems of practical value. Now, we arrived at the stage where researchers and practitioners are actually building AI systems that face real-world and industrial problems. This volume provides a set of twenty four well-selected contributions that deal with the application of AI to such real-life and industrial problems. These contributions are grouped and presented in five parts as follows: Part 1: General Issues Part 2: Intelligent Systems Part 3: Neural Networks in Modelling, Control and Scheduling Part 4: System Diagnostics Part 5: Industrial Robotic, Manufacturing and Organizational Systems Part 1 involves four chapters providing background material and dealing with general issues such as the conceptual integration of qualitative and quantitative models, the treatment of timing problems at system integration, and the investigation of correct reasoning in interactive man-robot systems.



Deep Learning For Unmanned Systems


Deep Learning For Unmanned Systems
DOWNLOAD
Author : Anis Koubaa
language : en
Publisher: Springer Nature
Release Date : 2021-10-01

Deep Learning For Unmanned Systems written by Anis Koubaa and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-01 with Technology & Engineering categories.


This book is used at the graduate or advanced undergraduate level and many others. Manned and unmanned ground, aerial and marine vehicles enable many promising and revolutionary civilian and military applications that will change our life in the near future. These applications include, but are not limited to, surveillance, search and rescue, environment monitoring, infrastructure monitoring, self-driving cars, contactless last-mile delivery vehicles, autonomous ships, precision agriculture and transmission line inspection to name just a few. These vehicles will benefit from advances of deep learning as a subfield of machine learning able to endow these vehicles with different capability such as perception, situation awareness, planning and intelligent control. Deep learning models also have the ability to generate actionable insights into the complex structures of large data sets. In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN). The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science. The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS) The book chapters present various techniques of deep learning for robotic applications. The book chapters contain a good literature survey with a long list of references. The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques. The book chapters are lucidly illustrated with numerical examples and simulations. The book chapters discuss details of applications and future research areas.



Neural Network Perspectives On Cognition And Adaptive Robotics


Neural Network Perspectives On Cognition And Adaptive Robotics
DOWNLOAD
Author : A Browne
language : en
Publisher: CRC Press
Release Date : 2019-08-20

Neural Network Perspectives On Cognition And Adaptive Robotics written by A Browne and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-20 with Mathematics categories.


Featuring an international team of authors, Neural Network Perspectives on Cognition and Adaptive Robotics presents several approaches to the modeling of human cognition and language using neural computing techniques. It also describes how adaptive robotic systems can be produced using neural network architectures. Covering a wide range of mainstream area and trends, each chapter provides the latest information from a different perspective.



Competition Based Neural Networks With Robotic Applications


Competition Based Neural Networks With Robotic Applications
DOWNLOAD
Author : Shuai Li
language : en
Publisher: Springer
Release Date : 2017-05-30

Competition Based Neural Networks With Robotic Applications written by Shuai Li and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-30 with Technology & Engineering categories.


Focused on solving competition-based problems, this book designs, proposes, develops, analyzes and simulates various neural network models depicted in centralized and distributed manners. Specifically, it defines four different classes of centralized models for investigating the resultant competition in a group of multiple agents. With regard to distributed competition with limited communication among agents, the book presents the first distributed WTA (Winners Take All) protocol, which it subsequently extends to the distributed coordination control of multiple robots. Illustrations, tables, and various simulative examples, as well as a healthy mix of plain and professional language, are used to explain the concepts and complex principles involved. Thus, the book provides readers in neurocomputing and robotics with a deeper understanding of the neural network approach to competition-based problem-solving, offers them an accessible introduction to modeling technology and the distributed coordination control of redundant robots, and equips them to use these technologies and approaches to solve concrete scientific and engineering problems.