Practical Graph Mining With R

DOWNLOAD
Download Practical Graph Mining With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Graph Mining With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Graph Mining With R
DOWNLOAD
Author : Nagiza F. Samatova
language : en
Publisher: CRC Press
Release Date : 2013-07-15
Practical Graph Mining With R written by Nagiza F. Samatova and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-15 with Business & Economics categories.
Discover Novel and Insightful Knowledge from Data Represented as a Graph Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. Develops Intuition through Easy-to-Follow Examples and Rigorous Mathematical Foundations Every algorithm and example is accompanied with R code. This allows readers to see how the algorithmic techniques correspond to the process of graph data analysis and to use the graph mining techniques in practice. The text also gives a rigorous, formal explanation of the underlying mathematics of each technique. Makes Graph Mining Accessible to Various Levels of Expertise Assuming no prior knowledge of mathematics or data mining, this self-contained book is accessible to students, researchers, and practitioners of graph data mining. It is suitable as a primary textbook for graph mining or as a supplement to a standard data mining course. It can also be used as a reference for researchers in computer, information, and computational science as well as a handy guide for data analytics practitioners.
Practical Graph Mining With R
DOWNLOAD
Author : William Hendrix
language : en
Publisher:
Release Date : 2013
Practical Graph Mining With R written by William Hendrix and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with categories.
Discover Novel and Insightful Knowledge from Data Represented as a Graph Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. Develops Intuition through Easy-to-Follow Examples and Rigorous Mathematical Foundations Every algorithm and example is accompanied with R code. This allows readers to see how the algorithmic techniques correspond to the process of graph data analysis and to use the graph mining techniques in practice. The text also gives a rigorous, formal explanation of the underlying mathematics of each technique. Makes Graph Mining Accessible to Various Levels of Expertise Assuming no prior knowledge of mathematics or data mining, this self-contained book is accessible to students, researchers, and practitioners of graph data mining. It is suitable as a primary textbook for graph mining or as a supplement to a standard data mining course. It can also be used as a reference for researchers in computer, information, and computational science as well as a handy guide for data analytics practitioners.
Practical Graph Mining With R
DOWNLOAD
Author : Nagiza F. Samatova
language : en
Publisher: CRC Press
Release Date : 2013-07-15
Practical Graph Mining With R written by Nagiza F. Samatova and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-15 with Business & Economics categories.
Discover Novel and Insightful Knowledge from Data Represented as a GraphPractical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or cluste
Encyclopedia Of Data Science And Machine Learning
DOWNLOAD
Author : Wang, John
language : en
Publisher: IGI Global
Release Date : 2023-01-20
Encyclopedia Of Data Science And Machine Learning written by Wang, John and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-20 with Computers categories.
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Behavior Analysis With Machine Learning Using R
DOWNLOAD
Author : Enrique Garcia Ceja
language : en
Publisher: CRC Press
Release Date : 2021-11-26
Behavior Analysis With Machine Learning Using R written by Enrique Garcia Ceja and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-26 with Psychology categories.
Behavior Analysis with Machine Learning Using R introduces machine learning and deep learning concepts and algorithms applied to a diverse set of behavior analysis problems. It focuses on the practical aspects of solving such problems based on data collected from sensors or stored in electronic records. The included examples demonstrate how to perform common data analysis tasks such as: data exploration, visualization, preprocessing, data representation, model training and evaluation. All of this, using the R programming language and real-life behavioral data. Even though the examples focus on behavior analysis tasks, the covered underlying concepts and methods can be applied in any other domain. No prior knowledge in machine learning is assumed. Basic experience with R and basic knowledge in statistics and high school level mathematics are beneficial. Features: Build supervised machine learning models to predict indoor locations based on WiFi signals, recognize physical activities from smartphone sensors and 3D skeleton data, detect hand gestures from accelerometer signals, and so on. Program your own ensemble learning methods and use Multi-View Stacking to fuse signals from heterogeneous data sources. Use unsupervised learning algorithms to discover criminal behavioral patterns. Build deep learning neural networks with TensorFlow and Keras to classify muscle activity from electromyography signals and Convolutional Neural Networks to detect smiles in images. Evaluate the performance of your models in traditional and multi-user settings. Build anomaly detection models such as Isolation Forests and autoencoders to detect abnormal fish behaviors. This book is intended for undergraduate/graduate students and researchers from ubiquitous computing, behavioral ecology, psychology, e-health, and other disciplines who want to learn the basics of machine learning and deep learning and for the more experienced individuals who want to apply machine learning to analyze behavioral data.
Computational Statistics With R
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2014-11-27
Computational Statistics With R written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Mathematics categories.
R is open source statistical computing software. Since the R core group was formed in 1997, R has been extended by a very large number of packages with extensive documentation along with examples freely available on the internet. It offers a large number of statistical and numerical methods and graphical tools and visualization of extraordinarily high quality. R was recently ranked in 14th place by the Transparent Language Popularity Index and 6th as a scripting language, after PHP, Python, and Perl. The book is designed so that it can be used right away by novices while appealing to experienced users as well. Each article begins with a data example that can be downloaded directly from the R website. Data analysis questions are articulated following the presentation of the data. The necessary R commands are spelled out and executed and the output is presented and discussed. Other examples of data sets with a different flavor and different set of commands but following the theme of the article are presented as well. Each chapter predents a hands-on-experience. R has superb graphical outlays and the book brings out the essentials in this arena. The end user can benefit immensely by applying the graphics to enhance research findings. The core statistical methodologies such as regression, survival analysis, and discrete data are all covered. - Addresses data examples that can be downloaded directly from the R website - No other source is needed to gain practical experience - Focus on the essentials in graphical outlays
Parallel Computing For Data Science
DOWNLOAD
Author : Norman Matloff
language : en
Publisher: CRC Press
Release Date : 2015-06-04
Parallel Computing For Data Science written by Norman Matloff and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-04 with Computers categories.
This is one of the first parallel computing books to focus exclusively on parallel data structures, algorithms, software tools, and applications in data science. The book prepares readers to write effective parallel code in various languages and learn more about different R packages and other tools. It covers the classic n observations, p variables matrix format and common data structures. Many examples illustrate the range of issues encountered in parallel programming.
Soccer Analytics
DOWNLOAD
Author : Clive Beggs
language : en
Publisher: CRC Press
Release Date : 2024-03-11
Soccer Analytics written by Clive Beggs and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-11 with Sports & Recreation categories.
Sports analytics is on the rise, with top soccer clubs, bookmakers, and broadcasters all employing statisticians and data scientists to gain an edge over their competitors. Many popular books have been written exploring the mathematics of soccer. However, few supply details on how soccer data can be analysed in real-life. The book addresses this issue via a practical route one approach designed to show readers how to successfully tackle a range of soccer related problems using the easy-to-learn computer language R. Through a series of easy-to-follow examples, the book explains how R can be used to: Download and edit soccer data Produce graphics and statistics Predict match outcomes and final league positions Formulate betting strategies Rank teams Construct passing networks Assess match play Soccer Analytics: An Introduction Using R is a comprehensive introduction to soccer analytics aimed at all those interested in analysing soccer data, be they fans, gamblers, coaches, sports scientists, or data scientists and statisticians wishing to pursue a career in professional soccer. It aims to equip the reader with the knowledge and skills required to confidently analyse soccer data using R, all in a few easy lessons.
Data Clustering
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: CRC Press
Release Date : 2018-09-03
Data Clustering written by Charu C. Aggarwal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Business & Economics categories.
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.
Advancing Geographic Information Science The Past And Next Twenty Years
DOWNLOAD
Author : Harlan Onsrud
language : en
Publisher: Lulu.com
Release Date : 2016-02-03
Advancing Geographic Information Science The Past And Next Twenty Years written by Harlan Onsrud and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-03 with Computers categories.
This book is the result of invited and competitive submissions to a 2015 academic institute on Advancing Geographic Information Science: The Past and Next Twenty Years. A core goal of the institute was to review the research challenges of the past twenty years and discuss emerging challenges of the next twenty.