[PDF] Statistics For Beginners In Data Science - eBooks Review

Statistics For Beginners In Data Science


Statistics For Beginners In Data Science
DOWNLOAD

Download Statistics For Beginners In Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistics For Beginners In Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistics For Beginners


Statistics For Beginners
DOWNLOAD
Author : Matt Foster
language : en
Publisher: Independently Published
Release Date : 2020

Statistics For Beginners written by Matt Foster and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


Become a Professional at Statistical Analysis and Data Science! Would you like to have the ability to implement statistical methods to your business, draw conclusions and make correct decisions based on them? Statistics play an important role in any industry and business. That's why there's a huge market for individuals who know how to conduct statistical analysis. People who have mastered this skill are considered the modern-day fortune tellers. Their abilities allow them to predict future business trends, market demands, profitability, general market risks, and sales volume! It's easy to get lost in the amount of available sources if you're only getting started. Conducting statistical analysis can be challenging for someone who was never properly introduced to the subject. This guide will help you, whether you're an absolute beginner to data science or an experienced data scientist who wants to learn new skills. Here, Matt Foster will teach you how to process data, predict outcomes, and upgrade your company's operations in the long term. Here's what you'll be able to do after reading this book: Understand and use descriptive statistics Use predictive analytics techniques to turn data into valuable information Use different learning algorithms to optimize your efficiency Analyze past data to predict future trends Integrate data from different sources to conduct a full analysis Use Python for files manipulation and handling Conduct data mining and social media analysis Master Python and PHP languages And so much more! If you're determined to learn statistical analysis, but intimidated by the huge amount of information and unfamiliar terminology, this guide will show you that you don't have to own a degree in data or computer science in order to develop this skill. All you need is this instruction manual, written in a clear, understandable way. The mechanisms are thoroughly explained and the step-by-step methods will help you conquer the world of descriptive statistics. If you want to learn how to conduct statistical analysis and implement it in your business, then Scroll up, click on "Buy Now with 1-Click", and Get Your Copy Now!



Statistics For Beginners In Data Science


Statistics For Beginners In Data Science
DOWNLOAD
Author : Ai Publishing
language : en
Publisher:
Release Date : 2020-04-18

Statistics For Beginners In Data Science written by Ai Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-18 with categories.


Statistics for Beginners in Data Science Statistical methods are an integral part of data science. Hence, a formal training in statistics is indispensable for data scientists. If you are keen on getting your foot into the lucrative data science and analysis universe, you need to have a fundamental understanding of statistical analysis. Besides, Python is a versatile programming language you need to master to become a career data scientist. As a data scientist, you will identify, clean, explore, analyze, and interpret trends or possible patterns in complex data sets. The explosive growth of Big Data means you have to manage enormous amounts of data, clean it, manipulate it, and process it. Only then the most relevant data can be used. Python is a natural data science tool as it has an assortment of useful libraries, such as Pandas, NumPy, SciPy, Matplotlib, Seaborn, StatsModels, IPython, and several more. And Python's focus on simplicity makes it relatively easy for you to learn. Importantly, the ease of performing repetitive tasks saves you precious time. Long story short--Python is simply a high-priority data science tool. How Is This Book Different? The book focuses equally on the theoretical as well as practical aspects of data science. You will learn how to implement elementary data science tools and algorithms from scratch. The book contains an in-depth theoretical and analytical explanation of all data science concepts and also includes dozens of hands-on, real-life projects that will help you understand the concepts better. The ready-to-access Python codes at various places right through the book are aimed at shortening your learning curve. The main goal is to present you with the concepts, the insights, the inspiration, and the right tools needed to dive into coding and analyzing data in Python. The main benefit of purchasing this book is you get quick access to all the extra content provided with this book--Python codes, exercises, references, and PDFs--on the publisher's website, at no extra price. You get to experiment with the practical aspects of Data Science right from page 1. Beginners in Python and statistics will find this book extremely informative, practical, and helpful. Even if you aren't new to Python and data science, you'll find the hands-on projects in this book immensely helpful. The topics covered include: Introduction to Statistics Getting Familiar with Python Data Exploration and Data Analysis Pandas, Matplotlib, and Seaborn for Statistical Visualization Exploring Two or More Variables and Categorical Data Statistical Tests and ANOVA Confidence Interval Regression Analysis Classification Analysis Click the BUY button and download the book now to start learning and coding Python for Data Science.



Practical Statistics For Data Scientists


Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-10

Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-10 with Computers categories.


Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data



Practical Statistics For Data Scientists


Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-10

Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-10 with Computers categories.


Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data



The Beginner S Guide To Data Science


The Beginner S Guide To Data Science
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2024-03-27

The Beginner S Guide To Data Science written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-27 with Education categories.


In today’s data-driven world, businesses and industries constantly seek insights to drive innovation, enhance decision-making, and stay ahead of the curve. Data science is not just a skill but a superpower that empowers you to extract meaningful patterns and knowledge from raw data, unlocking limitless opportunities. The theme of data science is to tell a story from data. There are many tools to help you build a narrative, but you should be focused on something other than the tool since the end is more important than the means. If you are a beginner, how should you embark on data science? You can learn many models, read many examples, and eventually gain the right mindset to handle a data science project. You can also learn the data science mindset first and then learn models that fit the picture when needed. The Beginner’s Guide to Data Science is your gateway to learn the data science mindset from examples. This ebook is written in the engaging and approachable style you are familiar with from Machine Learning Mastery. Discover exactly how to start and what the thought process is in dealing with a data science project.



Statistics For Data Science


Statistics For Data Science
DOWNLOAD
Author : James D. Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-17

Statistics For Data Science written by James D. Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-17 with Computers categories.


Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, and analysis Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful. What You Will Learn Analyze the transition from a data developer to a data scientist mindset Get acquainted with the R programs and the logic used for statistical computations Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks Get comfortable with performing various statistical computations for data science programmatically In Detail Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically. Style and approach Step by step comprehensive guide with real world examples



Data Science For Dummies


Data Science For Dummies
DOWNLOAD
Author : Lillian Pierson
language : en
Publisher: John Wiley & Sons
Release Date : 2017-02-21

Data Science For Dummies written by Lillian Pierson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-21 with Computers categories.


Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here’s what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.



The Beginner S Guide To Data Science


The Beginner S Guide To Data Science
DOWNLOAD
Author : Robert Ball
language : en
Publisher: Springer Nature
Release Date : 2022-11-15

The Beginner S Guide To Data Science written by Robert Ball and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-15 with Computers categories.


This book discusses the principles and practical applications of data science, addressing key topics including data wrangling, statistics, machine learning, data visualization, natural language processing and time series analysis. Detailed investigations of techniques used in the implementation of recommendation engines and the proper selection of metrics for distance-based analysis are also covered. Utilizing numerous comprehensive code examples, figures, and tables to help clarify and illuminate essential data science topics, the authors provide an extensive treatment and analysis of real-world questions, focusing especially on the task of determining and assessing answers to these questions as expeditiously and precisely as possible. This book addresses the challenges related to uncovering the actionable insights in “big data,” leveraging database and data collection tools such as web scraping and text identification. This book is organized as 11 chapters, structured as independent treatments of the following crucial data science topics: Data gathering and acquisition techniques including data creation Managing, transforming, and organizing data to ultimately package the information into an accessible format ready for analysis Fundamentals of descriptive statistics intended to summarize and aggregate data into a few concise but meaningful measurements Inferential statistics that allow us to infer (or generalize) trends about the larger population based only on the sample portion collected and recorded Metrics that measure some quantity such as distance, similarity, or error and which are especially useful when comparing one or more data observations Recommendation engines representing a set of algorithms designed to predict (or recommend) a particular product, service, or other item of interest a user or customer wishes to buy or utilize in some manner Machine learning implementations and associated algorithms, comprising core data science technologies with many practical applications, especially predictive analytics Natural Language Processing, which expedites the parsing and comprehension of written and spoken language in an effective and accurate manner Time series analysis, techniques to examine and generate forecasts about the progress and evolution of data over time Data science provides the methodology and tools to accurately interpret an increasing volume of incoming information in order to discern patterns, evaluate trends, and make the right decisions. The results of data science analysis provide real world answers to real world questions. Professionals working on data science and business intelligence projects as well as advanced-level students and researchers focused on data science, computer science, business and mathematics programs will benefit from this book.



Statistics For Data Scientists


Statistics For Data Scientists
DOWNLOAD
Author : Maurits Kaptein
language : en
Publisher: Springer Nature
Release Date : 2022-02-02

Statistics For Data Scientists written by Maurits Kaptein and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-02 with Computers categories.


This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.



Statistics For Data Science And Analytics


Statistics For Data Science And Analytics
DOWNLOAD
Author : Peter C. Bruce
language : en
Publisher: John Wiley & Sons
Release Date : 2024-11-05

Statistics For Data Science And Analytics written by Peter C. Bruce and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-05 with Computers categories.


Introductory statistics textbook with a focus on data science topics such as prediction, correlation, and data exploration Statistics for Data Science and Analytics is a comprehensive guide to statistical analysis using Python, presenting important topics useful for data science such as prediction, correlation, and data exploration. The authors provide an introduction to statistical science and big data, as well as an overview of Python data structures and operations. A range of statistical techniques are presented with their implementation in Python, including hypothesis testing, probability, exploratory data analysis, categorical variables, surveys and sampling, A/B testing, and correlation. The text introduces binary classification, a foundational element of machine learning, validation of statistical models by applying them to holdout data, and probability and inference via the easy-to-understand method of resampling and the bootstrap instead of using a myriad of “kitchen sink” formulas. Regression is taught both as a tool for explanation and for prediction. This book is informed by the authors’ experience designing and teaching both introductory statistics and machine learning at Statistics.com. Each chapter includes practical examples, explanations of the underlying concepts, and Python code snippets to help readers apply the techniques themselves. Statistics for Data Science and Analytics includes information on sample topics such as: Int, float, and string data types, numerical operations, manipulating strings, converting data types, and advanced data structures like lists, dictionaries, and sets Experiment design via randomizing, blinding, and before-after pairing, as well as proportions and percents when handling binary data Specialized Python packages like numpy, scipy, pandas, scikit-learn and statsmodels—the workhorses of data science—and how to get the most value from them Statistical versus practical significance, random number generators, functions for code reuse, and binomial and normal probability distributions Written by and for data science instructors, Statistics for Data Science and Analytics is an excellent learning resource for data science instructors prescribing a required intro stats course for their programs, as well as other students and professionals seeking to transition to the data science field.