[PDF] Stochastic Learning And Optimization - eBooks Review

Stochastic Learning And Optimization


Stochastic Learning And Optimization
DOWNLOAD

Download Stochastic Learning And Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Learning And Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Reinforcement Learning And Stochastic Optimization


Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-15

Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-15 with Mathematics categories.


REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.



Stochastic Learning And Optimization


Stochastic Learning And Optimization
DOWNLOAD
Author : Xi-Ren Cao
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-23

Stochastic Learning And Optimization written by Xi-Ren Cao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-23 with Computers categories.


Performance optimization is vital in the design and operation of modern engineering systems, including communications, manufacturing, robotics, and logistics. Most engineering systems are too complicated to model, or the system parameters cannot be easily identified, so learning techniques have to be applied. This is a multi-disciplinary area which has been attracting wide attention across many disciplines. Areas such as perturbation analysis (PA) in discrete event dynamic systems (DEDSs), Markov decision processes (MDPs) in operations research, reinforcement learning (RL) or neuro-dynamic programming (NDP) in computer science, identification and adaptive control (I&AC) in control systems, share the common goal: to make the "best decision" to optimize system performance. This book provides a unified framework based on a sensitivity point of view. It also introduces new approaches and proposes new research topics within this sensitivity-based framework.



First Order And Stochastic Optimization Methods For Machine Learning


First Order And Stochastic Optimization Methods For Machine Learning
DOWNLOAD
Author : Guanghui Lan
language : en
Publisher: Springer Nature
Release Date : 2020-05-15

First Order And Stochastic Optimization Methods For Machine Learning written by Guanghui Lan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-15 with Mathematics categories.


This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.



Stochastic Optimization For Large Scale Machine Learning


Stochastic Optimization For Large Scale Machine Learning
DOWNLOAD
Author : Vinod Kumar Chauhan
language : en
Publisher:
Release Date : 2021-11

Stochastic Optimization For Large Scale Machine Learning written by Vinod Kumar Chauhan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11 with Big data categories.


"Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning"--



Stochastic Simulation Optimization An Optimal Computing Budget Allocation


Stochastic Simulation Optimization An Optimal Computing Budget Allocation
DOWNLOAD
Author : Chun-hung Chen
language : en
Publisher: World Scientific
Release Date : 2010-06-04

Stochastic Simulation Optimization An Optimal Computing Budget Allocation written by Chun-hung Chen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-04 with Computers categories.


With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive.Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.



Stochastic Recursive Algorithms For Optimization


Stochastic Recursive Algorithms For Optimization
DOWNLOAD
Author : S. Bhatnagar
language : en
Publisher: Springer
Release Date : 2012-08-12

Stochastic Recursive Algorithms For Optimization written by S. Bhatnagar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-12 with Technology & Engineering categories.


Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from similarly diverse backgrounds: workers in relevant areas of computer science, control engineering, management science, applied mathematics, industrial engineering and operations research will find the content of value.



Simulation Based Optimization


Simulation Based Optimization
DOWNLOAD
Author : Abhijit Gosavi
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-06-30

Simulation Based Optimization written by Abhijit Gosavi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-30 with Science categories.


Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to convergence analysis of some of the methods enumerated above. *Computer programs for many algorithms of simulation-based optimization.



Stochastic Adaptive Search For Global Optimization


Stochastic Adaptive Search For Global Optimization
DOWNLOAD
Author : Z.B. Zabinsky
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-09-30

Stochastic Adaptive Search For Global Optimization written by Z.B. Zabinsky and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-09-30 with Computers categories.


The book overviews several stochastic adaptive search methods for global optimization and provides analytical results regarding their performance and complexity. It develops a class of hit-and-run algorithms that are theoretically motivated and do not require fine-tuning of parameters. Several engineering global optimization problems are summarized to demonstrate the kinds of practical problems that are now within reach. Audience: This book is suitable for graduate students, researchers and practitioners in operations research, engineering, and mathematics.



Optimization For Machine Learning


Optimization For Machine Learning
DOWNLOAD
Author : Suvrit Sra
language : en
Publisher: MIT Press
Release Date : 2012

Optimization For Machine Learning written by Suvrit Sra and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.


An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.



Multistage Stochastic Optimization


Multistage Stochastic Optimization
DOWNLOAD
Author : Georg Ch. Pflug
language : en
Publisher: Springer
Release Date : 2014-11-12

Multistage Stochastic Optimization written by Georg Ch. Pflug and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-12 with Business & Economics categories.


Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.