Thermal Issues In Testing Of Advanced Systems On Chip

DOWNLOAD
Download Thermal Issues In Testing Of Advanced Systems On Chip PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Thermal Issues In Testing Of Advanced Systems On Chip book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Thermal Issues In Testing Of Advanced Systems On Chip
DOWNLOAD
Author : Nima Aghaee Ghaleshahi
language : en
Publisher: Linköping University Electronic Press
Release Date : 2015-09-23
Thermal Issues In Testing Of Advanced Systems On Chip written by Nima Aghaee Ghaleshahi and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-23 with categories.
Many cutting-edge computer and electronic products are powered by advanced Systems-on-Chip (SoC). Advanced SoCs encompass superb performance together with large number of functions. This is achieved by efficient integration of huge number of transistors. Such very large scale integration is enabled by a core-based design paradigm as well as deep-submicron and 3D-stacked-IC technologies. These technologies are susceptible to reliability and testing complications caused by thermal issues. Three crucial thermal issues related to temperature variations, temperature gradients, and temperature cycling are addressed in this thesis. Existing test scheduling techniques rely on temperature simulations to generate schedules that meet thermal constraints such as overheating prevention. The difference between the simulated temperatures and the actual temperatures is called temperature error. This error, for past technologies, is negligible. However, advanced SoCs experience large errors due to large process variations. Such large errors have costly consequences, such as overheating, and must be taken care of. This thesis presents an adaptive approach to generate test schedules that handle such temperature errors. Advanced SoCs manufactured as 3D stacked ICs experience large temperature gradients. Temperature gradients accelerate certain early-life defect mechanisms. These mechanisms can be artificially accelerated using gradient-based, burn-in like, operations so that the defects are detected before shipping. Moreover, temperature gradients exacerbate some delay-related defects. In order to detect such defects, testing must be performed when appropriate temperature-gradients are enforced. A schedule-based technique that enforces the temperature-gradients for burn-in like operations is proposed in this thesis. This technique is further developed to support testing for delay-related defects while appropriate gradients are enforced. The last thermal issue addressed by this thesis is related to temperature cycling. Temperature cycling test procedures are usually applied to safety-critical applications to detect cycling-related early-life failures. Such failures affect advanced SoCs, particularly through-silicon-via structures in 3D-stacked-ICs. An efficient schedule-based cycling-test technique that combines cycling acceleration with testing is proposed in this thesis. The proposed technique fits into existing 3D testing procedures and does not require temperature chambers. Therefore, the overall cycling acceleration and testing cost can be drastically reduced. All the proposed techniques have been implemented and evaluated with extensive experiments based on ITC’02 benchmarks as well as a number of 3D stacked ICs. Experiments show that the proposed techniques work effectively and reduce the costs, in particular the costs related to addressing thermal issues and early-life failures. We have also developed a fast temperature simulation technique based on a closed-form solution for the temperature equations. Experiments demonstrate that the proposed simulation technique reduces the schedule generation time by more than half.
Computational Complexity Of Some Optimization Problems In Planning
DOWNLOAD
Author : Meysam Aghighi
language : en
Publisher: Linköping University Electronic Press
Release Date : 2017-05-17
Computational Complexity Of Some Optimization Problems In Planning written by Meysam Aghighi and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-17 with categories.
Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computational complexity of planning. Finding new tractable (i.e. polynomial-time solvable) problems has been a particularly important goal for researchers in the area. The reason behind this is not only to differentiate between easy and hard planning instances, but also to use polynomial-time solvable instances in order to construct better heuristic functions and improve planners. We identify a new class of tractable cost-optimal planning instances by restricting the causal graph. We study the computational complexity of oversubscription planning (such as the net-benefit problem) under various restrictions and reveal strong connections with classical planning. Inspired by this, we present a method for compiling oversubscription planning problems into the ordinary plan existence problem. We further study the parameterized complexity of cost-optimal and net-benefit planning under the same restrictions and show that the choice of numeric domain for the action costs has a great impact on the parameterized complexity. We finally consider the parameterized complexity of certain problems related to partial-order planning. In some applications, less restricted plans than total-order plans are needed. Therefore, a partial-order plan is being used instead. When dealing with partial-order plans, one important question is how to achieve optimal partial order plans, i.e. having the highest degree of freedom according to some notion of flexibility. We study several optimization problems for partial-order plans, such as finding a minimum deordering or reordering, and finding the minimum parallel execution length.
Analysis Design And Optimization Of Embedded Control Systems
DOWNLOAD
Author : Amir Aminifar
language : en
Publisher: Linköping University Electronic Press
Release Date : 2016-02-18
Analysis Design And Optimization Of Embedded Control Systems written by Amir Aminifar and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-18 with Control systems categories.
Today, many embedded or cyber-physical systems, e.g., in the automotive domain, comprise several control applications, sharing the same platform. It is well known that such resource sharing leads to complex temporal behaviors that degrades the quality of control, and more importantly, may even jeopardize stability in the worst case, if not properly taken into account. In this thesis, we consider embedded control or cyber-physical systems, where several control applications share the same processing unit. The focus is on the control-scheduling co-design problem, where the controller and scheduling parameters are jointly optimized. The fundamental difference between control applications and traditional embedded applications motivates the need for novel methodologies for the design and optimization of embedded control systems. This thesis is one more step towards correct design and optimization of embedded control systems. Offline and online methodologies for embedded control systems are covered in this thesis. The importance of considering both the expected control performance and stability is discussed and a control-scheduling co-design methodology is proposed to optimize control performance while guaranteeing stability. Orthogonal to this, bandwidth-efficient stabilizing control servers are proposed, which support compositionality, isolation, and resource-efficiency in design and co-design. Finally, we extend the scope of the proposed approach to non-periodic control schemes and address the challenges in sharing the platform with self-triggered controllers. In addition to offline methodologies, a novel online scheduling policy to stabilize control applications is proposed.
Beyond Recognition
DOWNLOAD
Author : Le Minh-Ha
language : en
Publisher: Linköping University Electronic Press
Release Date : 2024-05-06
Beyond Recognition written by Le Minh-Ha and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-06 with categories.
This thesis addresses the need to balance the use of facial recognition systems with the need to protect personal privacy in machine learning and biometric identification. As advances in deep learning accelerate their evolution, facial recognition systems enhance security capabilities, but also risk invading personal privacy. Our research identifies and addresses critical vulnerabilities inherent in facial recognition systems, and proposes innovative privacy-enhancing technologies that anonymize facial data while maintaining its utility for legitimate applications. Our investigation centers on the development of methodologies and frameworks that achieve k-anonymity in facial datasets; leverage identity disentanglement to facilitate anonymization; exploit the vulnerabilities of facial recognition systems to underscore their limitations; and implement practical defenses against unauthorized recognition systems. We introduce novel contributions such as AnonFACES, StyleID, IdDecoder, StyleAdv, and DiffPrivate, each designed to protect facial privacy through advanced adversarial machine learning techniques and generative models. These solutions not only demonstrate the feasibility of protecting facial privacy in an increasingly surveilled world, but also highlight the ongoing need for robust countermeasures against the ever-evolving capabilities of facial recognition technology. Continuous innovation in privacy-enhancing technologies is required to safeguard individuals from the pervasive reach of digital surveillance and protect their fundamental right to privacy. By providing open-source, publicly available tools, and frameworks, this thesis contributes to the collective effort to ensure that advancements in facial recognition serve the public good without compromising individual rights. Our multi-disciplinary approach bridges the gap between biometric systems, adversarial machine learning, and generative modeling to pave the way for future research in the domain and support AI innovation where technological advancement and privacy are balanced.
Studying Simulations With Distributed Cognition
DOWNLOAD
Author : Jonas Rybing
language : en
Publisher: Linköping University Electronic Press
Release Date : 2018-03-20
Studying Simulations With Distributed Cognition written by Jonas Rybing and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-20 with categories.
Simulations are frequently used techniques for training, performance assessment, and prediction of future outcomes. In this thesis, the term “human-centered simulation” is used to refer to any simulation in which humans and human cognition are integral to the simulation’s function and purpose (e.g., simulation-based training). A general problem for human-centered simulations is to capture the cognitive processes and activities of the target situation (i.e., the real world task) and recreate them accurately in the simulation. The prevalent view within the simulation research community is that cognition is internal, decontextualized computational processes of individuals. However, contemporary theories of cognition emphasize the importance of the external environment, use of tools, as well as social and cultural factors in cognitive practice. Consequently, there is a need for research on how such contemporary perspectives can be used to describe human-centered simulations, re-interpret theoretical constructs of such simulations, and direct how simulations should be modeled, designed, and evaluated. This thesis adopts distributed cognition as a framework for studying human-centered simulations. Training and assessment of emergency medical management in a Swedish context using the Emergo Train System (ETS) simulator was adopted as a case study. ETS simulations were studied and analyzed using the distributed cognition for teamwork (DiCoT) methodology with the goal of understanding, evaluating, and testing the validity of the ETS simulator. Moreover, to explore distributed cognition as a basis for simulator design, a digital re-design of ETS (DIGEMERGO) was developed based on the DiCoT analysis. The aim of the DIGEMERGO system was to retain core distributed cognitive features of ETS, to increase validity, outcome reliability, and to provide a digital platform for emergency medical studies. DIGEMERGO was evaluated in three separate studies; first, a usefulness, usability, and facevalidation study that involved subject-matter-experts; second, a comparative validation study using an expert-novice group comparison; and finally, a transfer of training study based on self-efficacy and management performance. Overall, the results showed that DIGEMERGO was perceived as a useful, immersive, and promising simulator – with mixed evidence for validity – that demonstrated increased general self-efficacy and management performance following simulation exercises. This thesis demonstrates that distributed cognition, using DiCoT, is a useful framework for understanding, designing and evaluating simulated environments. In addition, the thesis conceptualizes and re-interprets central constructs of human-centered simulation in terms of distributed cognition. In doing so, the thesis shows how distributed cognitive processes relate to validity, fidelity, functionality, and usefulness of human-centered simulations. This thesis thus provides a new understanding of human-centered simulations that is grounded in distributed cognition theory.
Completion Of Ontologies And Ontology Networks
DOWNLOAD
Author : Zlatan Dragisic
language : en
Publisher: Linköping University Electronic Press
Release Date : 2017-08-22
Completion Of Ontologies And Ontology Networks written by Zlatan Dragisic and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-22 with Computers categories.
The World Wide Web contains large amounts of data, and in most cases this data has no explicit structure. The lack of structure makes it difficult for automated agents to understand and use such data. A step towards a more structured World Wide Web is the Semantic Web, which aims at introducing semantics to data on the World Wide Web. One of the key technologies in this endeavour are ontologies, which provide a means for modeling a domain of interest and are used for search and integration of data. In recent years many ontologies have been developed. To be able to use multiple ontologies it is necessary to align them, i.e., find inter-ontology relationships. However, developing and aligning ontologies is not an easy task and it is often the case that ontologies and their alignments are incorrect and incomplete. This can be a problem for semantically-enabled applications. Incorrect and incomplete ontologies and alignments directly influence the quality of the results of such applications, as wrong results can be returned and correct results can be missed. This thesis focuses on the problem of completing ontologies and ontology networks. The contributions of the thesis are threefold. First, we address the issue of completing the is-a structure and alignment in ontologies and ontology networks. We have formalized the problem of completing the is-a structure in ontologies as an abductive reasoning problem and developed algorithms as well as systems for dealing with the problem. With respect to the completion of alignments, we have studied system performance in the Ontology Alignment Evaluation Initiative, a yearly evaluation campaign for ontology alignment systems. We have also addressed the scalability of ontology matching, which is one of the current challenges, by developing an approach for reducing the search space when generating the alignment.Second, high quality completion requires user involvement. As users' time and effort are a limited resource we address the issue of limiting and facilitating user interaction in the completion process. We have conducted a broad study of state-of-the-art ontology alignment systems and identified different issues related to the process. We have also conducted experiments to assess the impact of user errors in the completion process. While the completion of ontologies and ontology networks can be done at any point in the life-cycle of ontologies and ontology networks, some of the issues can be addressed already in the development phase. The third contribution of the thesis addresses this by introducing ontology completion and ontology alignment into an existing ontology development methodology.
Scalable And Efficient Probabilistic Topic Model Inference For Textual Data
DOWNLOAD
Author : Måns Magnusson
language : en
Publisher: Linköping University Electronic Press
Release Date : 2018-04-27
Scalable And Efficient Probabilistic Topic Model Inference For Textual Data written by Måns Magnusson and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-27 with categories.
Probabilistic topic models have proven to be an extremely versatile class of mixed-membership models for discovering the thematic structure of text collections. There are many possible applications, covering a broad range of areas of study: technology, natural science, social science and the humanities. In this thesis, a new efficient parallel Markov Chain Monte Carlo inference algorithm is proposed for Bayesian inference in large topic models. The proposed methods scale well with the corpus size and can be used for other probabilistic topic models and other natural language processing applications. The proposed methods are fast, efficient, scalable, and will converge to the true posterior distribution. In addition, in this thesis a supervised topic model for high-dimensional text classification is also proposed, with emphasis on interpretable document prediction using the horseshoe shrinkage prior in supervised topic models. Finally, we develop a model and inference algorithm that can model agenda and framing of political speeches over time with a priori defined topics. We apply the approach to analyze the evolution of immigration discourse in the Swedish parliament by combining theory from political science and communication science with a probabilistic topic model. Probabilistiska ämnesmodeller (topic models) är en mångsidig klass av modeller för att estimera ämnessammansättningar i större corpusar. Applikationer finns i ett flertal vetenskapsområden som teknik, naturvetenskap, samhällsvetenskap och humaniora. I denna avhandling föreslås nya effektiva och parallella Markov Chain Monte Carlo algoritmer för Bayesianska ämnesmodeller. De föreslagna metoderna skalar väl med storleken på corpuset och kan användas för flera olika ämnesmodeller och liknande modeller inom språkteknologi. De föreslagna metoderna är snabba, effektiva, skalbara och konvergerar till den sanna posteriorfördelningen. Dessutom föreslås en ämnesmodell för högdimensionell textklassificering, med tonvikt på tolkningsbar dokumentklassificering genom att använda en kraftigt regulariserande priorifördelningar. Slutligen utvecklas en ämnesmodell för att analyzera "agenda" och "framing" för ett förutbestämt ämne. Med denna metod analyserar vi invandringsdiskursen i Sveriges Riksdag över tid, genom att kombinera teori från statsvetenskap, kommunikationsvetenskap och probabilistiska ämnesmodeller.
Empirical Studies In Machine Psychology
DOWNLOAD
Author : Robert Johansson
language : en
Publisher: Linköping University Electronic Press
Release Date : 2024-10-09
Empirical Studies In Machine Psychology written by Robert Johansson and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-09 with categories.
This thesis presents Machine Psychology as an interdisciplinary paradigm that integrates learning psychology principles with an adaptive computer system for the development of Artificial General Intelligence (AGI). By synthesizing behavioral psychology with a formal intelligence model, the Non-Axiomatic Reasoning System (NARS), this work explores the potential of operant conditioning paradigms to advance AGI research. The thesis begins by introducing the conceptual foundations of Machine Psychology, detailing its alignment with the theoretical constructs of learning psychology and the formalism of NARS. It then progresses through a series of empirical studies designed to systematically investigate the emergence of increasingly complex cognitive behaviors as NARS interacts with its environment. Initially, operant conditioning is established as a foundational principle for developing adaptive behavior with NARS. Subsequent chapters explore increasingly sophisticated cognitive capabilities, all studied with NARS using experimental paradigms from operant learning psychology: Generalized identity matching, Functional equivalence, and Arbitrarily Applicable Relational Responding. Throughout this research, Machine Psychology is demonstrated to be a promising framework for guiding AGI research, allowing both the manipulation of environmental contingencies and the system’s intrinsic logical processes. The thesis contributes to AGI research by showing how using operant psychological paradigms with NARS can enable cognitive abilities similar to human cognition. These findings set the stage for AGI systems that learn and adapt more like humans, potentially advancing the creation of more general and flexible AI. Denna avhandling introducerar Maskinpsykologi som ett tvärvetenskapligt område där principer från inlärningspsykologi integreras med ett adaptivt datorsystem. Genom att kombinera forskning från beteendepsykologi med en formell modell för intelligens (Non-Axiomatic Reasoning System; NARS), undersöker avhandlingen hur operant betingning kan användas för att driva utvecklingen av Artificiell General Intelligens (AGI) framåt. Avhandlingen börjar med att förklara grunderna i Maskinpsykologi och hur dessa relaterar till både inlärningspsykologi och NARS. Därefter presenteras en serie experiment som systematiskt undersöker hur allt mer komplexa kognitiva beteenden kan uppstå när NARS interagerar med sin omgivning. Till att börja med etableras operant betingning som en central metod för att utveckla adaptiva beteenden med NARS. I de följande kapitlen utforskas hur NARS, genom experiment inspirerade av operant inlärningspsykologi, kan utveckla mer avancerade kognitiva förmågor som till exempel generaliserad identitetsmatchning, funktionell ekvivalens och så kallade arbiträrt applicerbara relationsresponser. Denna forskning visar att Maskinpsykologi är ett lovande verktyg för att vägleda AGI-forskning, eftersom det möjliggör att både påverka omgivningsfaktorer och styra systemets interna logiska processer. Avhandlingen bidrar till AGI-forskning genom att visa hur operanta psykologiska metoder, tillämpade på NARS, kan möjliggöra kognitiva förmågor som liknar mänskligt tänkande. Dessa insikter öppnar nya möjligheter för att utveckla AI-system som kan lära sig och anpassa sig på ett mer mänskligt sätt, vilket kan leda till skapandet av mer generell och flexibel AI.
Applications Of Partial Polymorphisms In Fine Grained Complexity Of Constraint Satisfaction Problems
DOWNLOAD
Author : Biman Roy
language : en
Publisher: Linköping University Electronic Press
Release Date : 2020-03-23
Applications Of Partial Polymorphisms In Fine Grained Complexity Of Constraint Satisfaction Problems written by Biman Roy and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-23 with categories.
In this thesis we study the worst-case complexity ofconstraint satisfaction problems and some of its variants. We use methods from universal algebra: in particular, algebras of total functions and partial functions that are respectively known as clones and strong partial clones. The constraint satisfactionproblem parameterized by a set of relations ? (CSP(?)) is the following problem: given a set of variables restricted by a set of constraints based on the relations ?, is there an assignment to thevariables that satisfies all constraints? We refer to the set ? as aconstraint language. The inverse CSPproblem over ? (Inv-CSP(?)) asks the opposite: given a relation R, does there exist a CSP(?) instance with R as its set of models? When ? is a Boolean language, then we use the term SAT(?) instead of CSP(?) and Inv-SAT(?) instead of Inv-CSP(?). Fine-grained complexity is an approach in which we zoom inside a complexity class and classify theproblems in it based on their worst-case time complexities. We start by investigating the fine-grained complexity of NP-complete CSP(?) problems. An NP-complete CSP(?) problem is said to be easier than an NP-complete CSP(?) problem if the worst-case time complexity of CSP(?) is not higher thanthe worst-case time complexity of CSP(?). We first analyze the NP-complete SAT problems that are easier than monotone 1-in-3-SAT (which can be represented by SAT(R) for a certain relation R), and find out that there exists a continuum of such problems. For this, we use the connection between constraint languages and strong partial clones and exploit the fact that CSP(?) is easier than CSP(?) when the strong partial clone corresponding to ? contains the strong partial clone of ?. An NP-complete CSP(?) problem is said to be the easiest with respect to a variable domain D if it is easier than any other NP-complete CSP(?) problem of that domain. We show that for every finite domain there exists an easiest NP-complete problem for the ultraconservative CSP(?) problems. An ultraconservative CSP(?) is a special class of CSP problems where the constraint language containsall unary relations. We additionally show that no NP-complete CSP(?) problem can be solved insub-exponential time (i.e. in2^o(n) time where n is the number of variables) given that theexponentialtime hypothesisis true. Moving to classical complexity, we show that for any Boolean constraint language ?, Inv-SAT(?) is either in P or it is coNP-complete. This is a generalization of an earlier dichotomy result, which was only known to be true for ultraconservative constraint languages. We show that Inv-SAT(?) is coNP-complete if and only if the clone corresponding to ? contains essentially unary functions only. For arbitrary finite domains our results are not conclusive, but we manage to prove that theinversek-coloring problem is coNP-complete for each k>2. We exploit weak bases to prove many of theseresults. A weak base of a clone C is a constraint language that corresponds to the largest strong partia clone that contains C. It is known that for many decision problems X(?) that are parameterized bya constraint language ?(such as Inv-SAT), there are strong connections between the complexity of X(?) and weak bases. This fact can be exploited to achieve general complexity results. The Boolean domain is well-suited for this approach since we have a fairly good understanding of Boolean weak bases. In the final result of this thesis, we investigate the relationships between the weak bases in the Boolean domain based on their strong partial clones and completely classify them according to the setinclusion. To avoid a tedious case analysis, we introduce a technique that allows us to discard a largenumber of cases from further investigation.
Machine Learning Based Bug Handling In Large Scale Software Development
DOWNLOAD
Author : Leif Jonsson
language : en
Publisher: Linköping University Electronic Press
Release Date : 2018-05-17
Machine Learning Based Bug Handling In Large Scale Software Development written by Leif Jonsson and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-17 with categories.
This thesis investigates the possibilities of automating parts of the bug handling process in large-scale software development organizations. The bug handling process is a large part of the mostly manual, and very costly, maintenance of software systems. Automating parts of this time consuming and very laborious process could save large amounts of time and effort wasted on dealing with bug reports. In this thesis we focus on two aspects of the bug handling process, bug assignment and fault localization. Bug assignment is the process of assigning a newly registered bug report to a design team or developer. Fault localization is the process of finding where in a software architecture the fault causing the bug report should be solved. The main reason these tasks are not automated is that they are considered hard to automate, requiring human expertise and creativity. This thesis examines the possi- bility of using machine learning techniques for automating at least parts of these processes. We call these automated techniques Automated Bug Assignment (ABA) and Automatic Fault Localization (AFL), respectively. We treat both of these problems as classification problems. In ABA, the classes are the design teams in the development organization. In AFL, the classes consist of the software components in the software architecture. We focus on a high level fault localization that it is suitable to integrate into the initial support flow of large software development organizations. The thesis consists of six papers that investigate different aspects of the AFL and ABA problems. The first two papers are empirical and exploratory in nature, examining the ABA problem using existing machine learning techniques but introducing ensembles into the ABA context. In the first paper we show that, like in many other contexts, ensembles such as the stacked generalizer (or stacking) improves classification accuracy compared to individual classifiers when evaluated using cross fold validation. The second paper thor- oughly explore many aspects such as training set size, age of bug reports and different types of evaluation of the ABA problem in the context of stacking. The second paper also expands upon the first paper in that the number of industry bug reports, roughly 50,000, from two large-scale industry software development contexts. It is still as far as we are aware, the largest study on real industry data on this topic to this date. The third and sixth papers, are theoretical, improving inference in a now classic machine learning tech- nique for topic modeling called Latent Dirichlet Allocation (LDA). We show that, unlike the currently dominating approximate approaches, we can do parallel inference in the LDA model with a mathematically correct algorithm, without sacrificing efficiency or speed. The approaches are evaluated on standard research datasets, measuring various aspects such as sampling efficiency and execution time. Paper four, also theoretical, then builds upon the LDA model and introduces a novel supervised Bayesian classification model that we call DOLDA. The DOLDA model deals with both textual content and, structured numeric, and nominal inputs in the same model. The approach is evaluated on a new data set extracted from IMDb which have the structure of containing both nominal and textual data. The model is evaluated using two approaches. First, by accuracy, using cross fold validation. Second, by comparing the simplicity of the final model with that of other approaches. In paper five we empirically study the performance, in terms of prediction accuracy, of the DOLDA model applied to the AFL problem. The DOLDA model was designed with the AFL problem in mind, since it has the exact structure of a mix of nominal and numeric inputs in combination with unstructured text. We show that our DOLDA model exhibits many nice properties, among others, interpretability, that the research community has iden- tified as missing in current models for AFL.