Computational Methods In Genome Research

DOWNLOAD
Download Computational Methods In Genome Research PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Methods In Genome Research book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Computational Methods In Genome Research
DOWNLOAD
Author : Sándor Suhai
language : en
Publisher: Springer Science & Business Media
Release Date : 1994
Computational Methods In Genome Research written by Sándor Suhai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Medical categories.
Chapters originating as plenary lectures at the July 1992 symposium provide a bridge between experimental databases (information) on the one hand and theoretical concepts (biological and genetic knowledge) on the other. Among the topics: informatics and experiments for the Human Genome Project; the
Computational Methods In Genome Research
DOWNLOAD
Author : Sándor Suhai
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Computational Methods In Genome Research written by Sándor Suhai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
The application of computational methods to solve scientific and pratical problems in genome research created a new interdisciplinary area that transcends boundaries traditionally separating genetics, biology, mathematics, physics, and computer science. Computers have been, of course, intensively used for many year~ in the field of life sciences, even before genome research started, to store and analyze DNA or proteins sequences, to explore and model the three-dimensional structure, the dynamics and the function of biopolymers, to compute genetic linkage or evolutionary processes etc. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function of genomes of higher organisms, has generated, however, not only a huge and burgeoning body of data but also a new class of scientific questions. The nature and complexity of these questions will require, beyond establishing a new kind of alliance between experimental and theoretical disciplines, also the development of new generations both in computer software and hardware technologies, respectively. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can ·attack with success. Many of us still feel that computational models rationalizing experimental findings in genome research fulfil their promises more slowly than desired. There also is an uncertainity concerning the real position of a 'theoretical genome research' in the network of established disciplines integrating their efforts in this field.
Computational Methods For Understanding Bacterial And Archaeal Genomes
DOWNLOAD
Author : Ying Xu
language : en
Publisher: World Scientific
Release Date : 2008-08-06
Computational Methods For Understanding Bacterial And Archaeal Genomes written by Ying Xu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-06 with Science categories.
Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses./a
Evolutionary Genomics
DOWNLOAD
Author : Maria Anisimova
language : en
Publisher: Humana Press
Release Date : 2012-03-08
Evolutionary Genomics written by Maria Anisimova and has been published by Humana Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-08 with Medical categories.
Together with early theoretical work in population genetics, the debate on sources of genetic makeup initiated by proponents of the neutral theory made a solid contribution to the spectacular growth in statistical methodologies for molecular evolution. Evolutionary Genomics: Statistical and Computational Methods is intended to bring together the more recent developments in the statistical methodology and the challenges that followed as a result of rapidly improving sequencing technologies. Presented by top scientists from a variety of disciplines, the collection includes a wide spectrum of articles encompassing theoretical works and hands-on tutorials, as well as many reviews with key biological insight. Volume 2 begins with phylogenomics and continues with in-depth coverage of natural selection, recombination, and genomic innovation. The remaining chapters treat topics of more recent interest, including population genomics, -omics studies, and computational issues related to the handling of large-scale genomic data. Written in the highly successful Methods in Molecular BiologyTM series format, this work provides the kind of advice on methodology and implementation that is crucial for getting ahead in genomic data analyses. Comprehensive and cutting-edge, Evolutionary Genomics: Statistical and Computational Methods is a treasure chest of state-of the-art methods to study genomic and omics data, certain to inspire both young and experienced readers to join the interdisciplinary field of evolutionary genomics.
Theoretical And Computational Methods In Genome Research
DOWNLOAD
Author : Sándor Suhai
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Theoretical And Computational Methods In Genome Research written by Sándor Suhai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
The application ofcomputational methods to solve scientific and practical problems in genome research created a new interdisciplinary area that transcends boundaries tradi tionally separating genetics, biology, mathematics, physics, and computer science. Com puters have, of course, been intensively used in the field of life sciences for many years, even before genome research started, to store and analyze DNA or protein sequences; to explore and model the three-dimensional structure, the dynamics, and the function of biopolymers; to compute genetic linkage or evolutionary processes; and more. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function ofgenomes ofhigher organisms, has generated, how ever, not only a huge and exponentially increasing body of data but also a new class of scientific questions. The nature and complexity of these questions will also require, be yond establishing a new kind ofalliance between experimental and theoretical disciplines, the development of new generations both in computer software and hardware technolo gies. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can attack with suc cess. Many of us still feel that computational models rationalizing experimental findings in genome research fulfill their promises more slowly than desired. There is also an uncer tainty concerning the real position of a "theoretical genome research" in the network of established disciplines integrating their efforts in this field.
Computational Genomics With R
DOWNLOAD
Author : Altuna Akalin
language : en
Publisher: CRC Press
Release Date : 2020-12-16
Computational Genomics With R written by Altuna Akalin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-16 with Mathematics categories.
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Computational Genome Analysis
DOWNLOAD
Author : Richard C. Deonier
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-12-27
Computational Genome Analysis written by Richard C. Deonier and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-27 with Computers categories.
This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.
Theoretical And Computational Methods In Genome Research
DOWNLOAD
Author : Sandor Suhai
language : en
Publisher:
Release Date : 1997-06-30
Theoretical And Computational Methods In Genome Research written by Sandor Suhai and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-06-30 with categories.
Big Data Analytics In Genomics
DOWNLOAD
Author : Ka-Chun Wong
language : en
Publisher: Springer
Release Date : 2016-10-24
Big Data Analytics In Genomics written by Ka-Chun Wong and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-24 with Computers categories.
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.